Specification of the large memory footprint key derivation function used
for the extrinsic NADA-Cap in Academic Signature

Academic Signature is meant to offer the highest possible protection of privacy against
powerful state sponsored agencies with near limitless financial resources. Such adver-
saries are capable of fabricating large numbers of ASICs to parallelize password cracking.
In order to aggravate dictionary attacks carried out with such gear, the necessary chip sur-
face per cracking circuit may be increased. The most straightforward method to achieve
this is using a key derivation function with high memory needs.

The legacy key derivation function used in academic signature's login procedure and in
symmetric encryption already has formidable memory and number crunching require-
ments. Using legacy elliptic curve stretching with a 1024 bit elliptic curve already requires
at least 4096 bit storage space.

In order to hike up this limit further, a new key derivation function, suitable for up to two
GByte block size, was designed and introduced from version 55 onwards. It is used in Aca-
demic Signature NADA-Cap protection for extrinsic caps with a block size of 500 kilobyte.
Intrinsically it needs at least a second consecutive block of 500 kilobytes. Thus an attacker
attempting to parallelize NADA-Cap password cracking needs to assign at least a
megabyte of storage space to each circuit and has to supply fast integer arithmetics capa-
bilities (modulo reduction and multiplication) for each cracking circuit.

For an intermediate time, Academic Signature will offer a selector box in the en/decryption
dialogs to use the legacy capping key derivation function. Thus the contents of previously
encrypted NADA-Capped Files will remain accessible to the legitimate user.

The C++ code of the new key derivation function and some explanations are given below.
It is contained in the module elliptici.cpp and is labeled "kyprep_longblock()".

/***/

bool kyprep_longblock(longnumber *pky, wxString *keystr, longnumber *psalt, ellipse *pse, int
stretch,int outlen, ulong32 memsize)

//produce outlen byte key from keystring,
//require at least memsize bytes consecutive memory
{

longnumber tmp;

e_p point;

char *tmpc;

int i;

bool goodp;

ulong32 1i, ol_len;

// if default return trivial
pky->stortext(keystr);

if((*keystr== _("default"))||((psalt==NULL)&&(stretch==0))) A)
return true; //cut short if default

if(memsize <= (ulong32) outlen)

{
throwout(_("Warning, hugeblock smaller than keylength\nadjusting to keylength!"),2);
memsize= (ulong32) outlen;

}

pky->setsize(true); B)

pky->shrinktofit(1);

if(psalt != NULL) pky->appendnum(psalt); //mingle with salt prior to time consuming step

pky->setsize(true); C)

pky->shrinktofit(1);

if((outlen>2000)| | (outlen<5)){throwout(_("Fatal error!\nkeylength > 2000 bytes or <5 byte is

crazy\n aborting!")); return false;}
tmp.resizelonu((unsigned long)(outlen+2),0);
//expand key into outlen byte with oneway fun from wxstring

tmpc=develop_o_malloc((int) pky->size, (char *)(pky->ad), 2,5,outlen,2); D)
memcpy(tmp.ad, tmpc, outlen);

free(tmpc);

tmpc= (char *)malloc(memsize); //may be huge memsize E)

if(tmpc==NULL)

{

throwout (_("insufficient memory error!\n Aborting"),3);
return false;

tmp.setsize(true);
if(pse!=NULL)

//initialize Progress bar
wxProgressDialog pbar(_("stretching"),_("elliptic curve stretching in progress\nplease
wait!"),stretch);
for(i=0;i<stretch;i++) //time consuming operations
{
goodp=pbar.Update(i+1iu);
tmp.lonumodulo_qqq_e(&(pse->q)); //modulo group order g F)
//elliptic operations
point.copy_ep(&(pse->d0));
point.mult_p_qj(&tmp, pse); G)
//put y-coordinate into tmp
tmp . copynum(&(point.y)); H)
tmp.shrinktofit(1);
tmp.appendnum(&(point.x));
tmp.setsize(true);
tmp.shrinktofit(1);
0l _len= tmp.size;
//now fill tmp cyclically into longbuffer and introduce superlong PRF
for(1i=0;li<memsize;li++) I)

*(tmpc + 1i)= *(tmp.ad + (1li% (tmp.size-1)));
if(!develop_longblock(tmpc, memsize, 1)) J)

throwout (_("Error in develop longblock\n Aborting!"),10);
free(tmpc);
return false;

}
//pick first tmp.size bytes of tmpc for tmp

memcpy(tmp.ad, tmpc, o0l _len); K)
tmp.setsize(true);
tmp.shrinktofit(1);

} L)

//mingle with salt again

if(psalt != NULL) tmp.randomize_o(2,psalt, (unsigned long)outlen,0,0); M)
else tmp.randomize_d(2,0);

tmp.resizelonu((unsigned long)(outlen+2),0);

tmp.setsize(true);

//expand key into outlen byte with oneway fun from wxstring
tmpc=develop_o_malloc((int) tmp.size, (char *) tmp.ad, 2,5,outlen,2); N)
memcpy(tmp.ad, tmpc, outlen);

free(tmpc);

tmp.setsize(true);

pky->copynum(&tmp); 0)

return true;

}

/***/

Explanation:

A) Check for escape keyword "default" and skip salting and stretching altogether in this
case.

B) Standardize key longnumber size to one leading zero byte and append salt:

C) Standardize resulting longnumber size to one leading zero byte

D) Use a fleas PRF to randomize and cast into outlen bytes as starter block.

E) Allocate large working memory block to tax attackers ASIC memory requirement

F) Modulo reduce starter block with respect to Group order of selected elliptic curve.

G) Multiply with gereator point of Group

H) Standardize x and y coordinate size to longnumber with one leading zero and append x
foy.

I) Cyclically fill huge buffer with resulting longnumber

J) Apply special "huge variant” of a Fleas PRF that is suitable for up to 32 bit adressing
within block.

K) Pick first count of bytes, that corresponds to the buffer size which was used for the
cyclic fill of the huge buffer in Step |

L) Loop to step F until stretch iterations are completed

M) Apply PRF to result concatenated with salt

N) Apply a final PRF-cast to desired key size

O) Copy into key bearing longnumber

The core function "develop_longblock()" and its working horse "dbytadd_a_1()" adhere to
the general pattern of the fleas pseudo random functions. Since the fundamental pattern of
the fleas pseudo random functions is commented elsewhere, it will not be commented in
detail here.

The 32 bit addressing within the block in "dbytadd_a_1()" is achieved by chained index
multiplications ("hind *="). This results in a certain entropy loss, part of which is
covert and hard to exploit(e.g. primes do not occur) and part of which is plain and would
facilitate attacks somewhat. This plain part results mainly in an even/odd bias at the lowest
bits. Statistically in three out of four random multiplications, the result will be even. In order
to prevent this bias from piling up, | added increments after index multiplications.

The code resides in the module "helpersxx.cpp" and is given below:

VaRd A AR AR AR AR AR AR EAEEEEEEREREREREREREREREREREREREREEELELEEELYY

bool develop_longblock(char* ad, ulong32 blolen, unsigned char spice)

{
char *hbl;

ulong32 i;

hbl= (char*) malloc(blolen);
if(hbl== NULL)

throwout(_("error in dev_longblock!\nmemory shortage?\naborting! "));
return false;

}
memcpy(hbl,ad,blolen);
if(!dbytadd_a_1l(blolen,hbl, hbl,1,spice,1.5))

free(hbl);
return false;

}
if(!dbytadd_a_l(blolen,ad,ad,1,spice+1,1.5))
{

free(hbl);
return false;

}
for(i=0;i< blolen-3;i+=4)
((ulon932)(ad+i)) N= *((ulonggz*)(hbl + i));
}
while(i<blolen)
“(ad + 1) A= *(hbl + i);
i++;
}

free(hbl);
return true;

}

/***/

bool dbytadd_a_1(ulong32 blolen, char* bladwell, char* pertxt, int rounds, int spice, double fr)
//spice is individualizer(def 1 set in header),fr is flea loop multiplier(default 3 set in header)

{

ulong32 ind, o0i, k,hind, thresh3;
unsigned char *blad;
ulong32 magic=0;

if(blolen<2)return false;
if(fr<o0||fr>10)fr=3; //default is 3 anyways

blad=(unsigned char*)malloc(blolen);
memcpy(blad, bladwell,blolen);
for(k=0;k<(unsigned int)rounds;k++)

for(0i=0;o0i<blolen;oi++) //systematically working up

{
hind = (ulong32) *(blad +((*(blad + oi))%blolen)); //hind is one byte
hind+=(unsigned int)spice; //allow for differently spiced variants
hind *= *(blad+((oi+1)%blolen)); // determine target index, hind is now 2 byte
hind++; //mitigate even-odd bias
hind *= *(blad+((o0i+3)%blolen)); // determine target index, hind is now 3 byte
hind++; //mitigate even-odd bias
hind *= *(blad+((0oi+7)%blolen)); // determine target index, hind is now 4 byte
hind++; //mitigate even-odd bias
hind %= blolen; //points to anywhere in block
if(hind!=0i) *(blad + o0i) += rotbyte(*(blad+hind), ((unsigned char)(hind+0i)&7));
*(blad+oi)+=(unsigned char)spice+(unsigned char)oi;
if(!(0i&2)) *(blad+hind) = *(blad+hind) A255; //entropizer step

3

for(oi=blolen-1;0i>0;0i--) //systematically working down

{
hind = (unsigned int) *(blad +((*(blad + o0i))%blolen));
hind+=(unsigned int)spice; //allow for differently spiced variants
hind *= *(blad+((oi+1)%blolen)); // determine target index
hind++; //mitigate even-odd bias
hind *= *(blad+((oi+2)%blolen)); // determine target index, hind is now 3 byte
hind++; //mitigate even-odd bias
hind *= *(blad+((oi+6)%blolen)); // determine target index, hind is now 4 byte
hind++; //mitigate even-odd bias
hind %= blolen;
if(hind!=0i) *(blad + o0i) += rotbyte(*(blad+hind), ((unsigned char)(hind+01i)&7));
*(blad+oi)+=(unsigned char)spice+(unsigned char)oi;
if(!(0i&2)) *(blad+hind) = *(blad+hind) ~255; //entropizer step

}
ind=blolen/2;
thresh3=((ulong32)(fr*(double)blolen));
for(oi=0;o0i<thresh3;o0i++) //second loop statistically jumping
{
hind = (ulong32)*(blad+ind); // determine target index, 1 byte long
hind +=magic; //might be a little more than 1 byte now
magic += *(blad + oi%blolen) +(unsigned int)spice;
hind *= (ulong32)*(blad+(ind+2)%blolen); //now more than 2 bytes
hind++; //mitigate even-odd bias
hind *= (ulong32)*(blad+(ind+5)%blolen); //now more than 3 bytes
hind++; //mitigate even-odd bias
hind *= (ulong32)*(blad+(ind+7)%blolen); //now more than 4 bytes, possibly reentrant
hind++; //mitigate even-odd bias
hind %= blolen;
if(hind!= ind) *(blad + ind) += rotbyte(*(blad+hind), (unsigned char)(ind+hind)&7); //add
rotated target byte
*(blad+ind)+=spice+(unsigned char)oi;//kill zeros
if(0i&2) *(blad+hind) = *(blad+hind) A255; //entropizer
ind = (ind +hind+oi+spice)%blolen; //reset entry index, expression possibly reentrant
}
}
memcpy(pertxt,blad,blolen);
if(blad != NULL) free(blad);
return true;

/*************************************/

Tip for developers:

| recommend to use individualized variants of key derivation functions (e.g. by using the
spice parameter differently) and explicitly NOT to adhere to standards. This is not like
encryption primitives. It would be hard to get it wrong and the best idea would be to force
the NSA to design a new ASIC for each single piece of security/login software in the

field :-). They wouldn't!

You may use a simplified version without the elliptic curve stretching part and just use an
individualized version of the "develop_longblock()" routine, if you shy away from elliptic
curve algebra. Just compensate for the ECC part e.g. by doubling the round number "fr".

