Monoid



Definition:

A monoid is an algebraic structure with an
associative binary operation that has an identity
element.



Data.Monoid

class Monoid a where

-- an identity element
mempty ::a

- an associative operation
mappend ::a->a->a



Rules of monoid

Rule 1: identity element
mempty mappend n ==
n mappend mempty == n

Rule 2: associative operation
(a ‘mappend b) mappend c
== a mappend (b ‘'mappend” c)



Examples of monoid

Plus (+)

Product (*)



Examples of monoide

binary operator :

identity element :

associative :

(++)

[]

[1++n == n
n++[] == n

(a++Db)++cC
== a++ (b ++0C)



We already have individual functions like (++),
why do we use mappend instead?



newtype Sum a = Sum { getSum :: a }
deriving (Eq, Ord, Read, Show, Bounded)

instance Num a => Monoid (Sum a) where
mempty = Sum 0
Sum x mappend Sumy =Sum (X +V)



newtype Product a = Product { getProduct :: a }
deriving (Eq, Ord, Read, Show, Bounded)

instance Num a => Monoid (Product a) where
mempty = Product 1
Product x ‘'mappend’ Product y = Product (x * y)



Foldable

e Type class : Data.Foldable
e abstract foldl and foldr from list
e applicable to arbitrary structures



e Tuples are already instances of monoids.

e Tuples of monoids



Extend monoid

define type class Aggregation:

class (Monoid a) => Aggregation a where
type AggResulta :: *
aggResult :: a -> AggResult a



e Definition
e Rules
e Usage




Questions?




