
Artificial Life Environment

A Framework For Artificial Life Simulations

Gerd Beuster

Artificial Intelligence Research Group, University Koblenz, Germany

Abstract

Artificial Life Environment (ALE) is a framework for artificial life simulations. Genetic

algorithms, artificial neural networks and cellular automata provide the building

blocks for the creation of artificial life simulations. ALE is becoming both a powerful

research-, and educational-tool. ALE is still in alpha-stage.

1. Introduction

1.1 A Framework for Artificial Life Simulations

When developing software for artificial life simulations, most researchers write their

own tools from scratch in a general purpose programming language. This approach

as several disadvantages:

� Simulation software for artificial life is complex. It takes a lot of resources to

develop a simulation software. We would prefer to spend our time and

resources on the problem we are interested it, not on writing the software that

we need to tackle the problem.

� Writing artificial life software is a tedious task. Every complex piece of software

contains numerous bugs. Debugging is especially complicate in artificial life

simulations, because usually we are dealing with non-deterministic processes.

Bugs do not necessary result in complete failure, but may influence the result in

subtle ways.

� Simulation software written for “personal use” is usually highly specialized. This

makes it very hard for third parties to use the software. Verification and

extension of the simulations is very complicate for people not directly involved in

the creation of the software.

� Even if simulations from different people or groups are similar in their logical

structure, it is hardly possible to combine and interchange components of the

simulations, or to combine different simulations into a single one, because

similar logical structures are usually not reflected in the structures of the

programs. Similar simulations can and will be very different in their

implementation.

� For a beginner, it is not easy to get into the field of artificial life, if one has to

write one's own simulation tools from scratch.

1.2 Aims of ALE

ALE (Artificial Life Environment) is an attempt to overcome these problems. ALE

provides building blocks for artificial life simulations suited for certain problems.

These building blocks can be recombined and changed in order to form artificial life

simulations. By this approach, many of the problems stated in the last section can

be solved or at least alleviated:

� A researcher who wants to set up a simulations no longer needs to start from

scratch. Existing building blocks can be modified and combined to create the

simulation the researcher is interested in. With ALE, she additionally gets a

predefined set of analysis tools and a graphical user interface.

� The building-block-system forces a certain structure onto the simulation. Since

the base structure is the same for all simulations written with ALE, it becomes

more easy to exchange parts of simulations. When two researchers are working

on a similar problem, they are able to share the simulations' components, and

even whole simulations.

� People not familiar with the field of artificial life can start playing around with

existing building block. This is made even more simple by ALE's graphical user

interface. The GUI allows a novice user to set up simulations very quickly by

changing existing simulations and creating new building-blocks. The new user

gets a direct-feedback of how the different factors influence her simulation.

� By using a common, open sourced system, both the speed of development of

the simulation tool and its reliability is improved.[6]

2 Simulation Building Blocks

ALE does not aim at providing a general purpose tool for artificial life simulations.

There is already a high quality tool for general purpose artificial life simulations

available - SWARM [4]. The goal of ALE is to provide a tool for certain classes of

artificial life simulations. ALE focuses on BUGS-like [2] simulations. These are

simulations with the following characteristics:

� There is some form of a spatial environment.

� This environment is populated by autonomous entities.

� The entities contain some form of genetic information.

� The entities have a decision-making unit, a “brain”.

 We have populations of autonomous entities who are living in some environment.

These entities are (partly) determined by their genes, and they have some form of a

“brain” which tells them how to act. See figure 1. In the ALE-library, this structure is

Figure 1: Components of ALE: CellularAutomaton,

Body, NeuralNet, Chromosome

reflected by the class hierarchy shown in figure 2.

These classes interact in the following way:

CellularAutomaton The environment is provided by class CellularAutomaton. The

base class CellularAutomaton is a two dimensional cellular automaton with an

asynchronous [9] update function. Class CellularAutomaton includes methods for

adding entities to the cellular automaton, running the simulation, and keeping track

of some statistical data. The cellular automaton runs the simulation by successively

telling the entities on the cellular automaton to act.

Beside providing the simulation environment, class CellularAutomaton keeps track

of some global data. Since the simulation is driven by the interaction of the

individual entities, we have to decide how to keep track of data which is only

observable on a higher aggregation level, for example the sizes of the populations,

or the average fitnesses of the different entity-

species. This task is taken care of by the cellular

automaton.

The base class CellularAutomaton might not be

appropriate for many simulations. Perhaps we

need a 1-dimensional cellular automaton, or one

with a synchronous update function, or one with

six instead of eight neighboring cells. Because of

the building-block-concept of ALE, we can simply

exchange the base cellular automaton for a

different model which implements the features needed for the specific simulation.

No other part of the simulation has to be changed.

Body Class Body is the class for the entities, the main actors of a simulation.

Bodies populate the cells of the cellular automaton. Class CellularAutomaton

successively calls the instances of class Body residing on it in order run the

simulation. An entity
1
 usually acts in the following way: It examines its environment

and its internal states, and decided how to act (for example, it might decide to

move) and how to change its internal states. How the entity acts exactly, and what it

“sees” from its environment, depends solely on the actual implementation of the

entity. The programmer is totally free in how she implements the entities for her

simulation, but since all entities inherit from the same base class Body, it is possible

to let entity from different origins interact within the same simulation, and it is also

possible to exchange one kind of entities for another kind within a simulation.

Chromosome Although the programmer is free to implement the entities in

whatever form she wants, there are two more class which can (and should!) be

used when programming it. The first class is Chromosome. Every instance of Body

contains an instance of Chromosome (or one of its subclasses). Class Chromosome

is used to carry the genetic information of the Body. This is usually just a string of

float or integer valued numbers and some operations on it. Again, how this genetic

information is used by the entity, depends solely on the entity's implementation. For

example, in some implementation of an entity, the genetic information might be

ignored completely, in others (as we will see in a later example) it might determine

the appearance, the physical condition or the behavior of the entity.

1
We will use the term “entity” for instances of class Body and instances of classes who inherit from

Body.

Figure 2:Hierarchy of base

classes

AleObject

 CellularAutomaton

 Body

 NeuralNet

 Chromosome

Basically, Chromosome contains the data and methods that we know from a genetic

algorithm[5]: Gene-Information and operations for the reproduction of itself. In the

base class, Chromosome provides float and integer valued genes with the

manipulation operators mutation and one-point-crossover. A researcher who wanted

to use different kinds of genetic operations, for example two-point-crossover, would

write a subclass of Chromosome that implements two-point-crossover, and run the

simulation with this class instead.

NeuralNet NeuralNet is the decision-making unit of the entities. The instances of

this class act as follows: They get a sequence of float-valued numbers as inputs,

and they return another sequence of float-valued numbers as output. Class

NeuralNet is in the same position as Chromosome. Every instance of (a subclass of)

Body contains a NeuralNet. How it is used, depends on the actual implementation

of the entity. That is, the Body decides which kind of information it passes into the

neural network, and it decides how the output of NeuralNet is interpreted. The name

NeuralNet is basically kept for historical reasons. As a matter of fact, the decision

making unit does not need to be a neural network. One can implement it in

whatever technique one wants to. Figure 3 shows how the neural network works:

The entity examines its Moore-neighborhood. A representation of its neighborhood

is passed as an array of floats into the neural network. The neural network does

some calculations, and returns an output value. The output value is interpreted by

the entity as a direction to move to.

3 Application

Although the basic structure of all ALE-simulations is defined by the building blocks,

it is possible to set up a wide variety of different simulations scenarios. The main

part of this section covers a description of a BUGS-like [2] scenario. In the rest of

the section, we will demonstrate the flexibility of ALE by some toy-examples from

quite different areas.

Figure 3: The entity examines its Moore-neighborhood. A

representation of its neighborhood is passed as an array of float into

the neural network. The neural network does some calculations, and

returns an output value. The output value is interpreted by the entity as

a direction to move to.

3.1 Predator/Prey Simulations

The scenario We want to simulate a world inhibited by predators and preys. The

predators shall learn on a genetic level to hunt the preys, and the preys shall learn

to evade the predators. A predator eats another entity by moving on the field

occupied by the other entity.

Every entity has some amount of energy. Depending on the activity of the entity, its

energy level raises or drops. When the energy level hits zero, the entity dies. When

the energy level exceeds a threshold, it reproduces asexually. The energy

household of an entity is defined by four variables:

1. The energy level at birth.

2. The energy consumption per move.

3. The energy gain when eating an entity.

4. The energy threshold for reproduction.

The possible actions of a predator or prey are to move to one of the cells

surrounding the cell the entity is currently at. In order to determine their actions, the

entities shall use their NeuralNet which itself is constructed according to the

Chromosome of the entity.

Implementation

� Classes Predator and Prey

Both the classes Predator and Prey inherit from base class Body. The only real

difference between a predator and a prey is that preys can not eat other entities.

For the prey, it is not possible to move to a cell that is inhibited by an other entity.

Since they can not eat other entities, they must gain energy whenever they

move. Therefore their energy consumption per move must be negative. One can

think of this as a process where energy from the environment is taken by the

entity, like in the real world plants facilitate sunlight.

The energy consumption is defined by the first four genes of the Chromosome.

When a new predator or prey is created, it checks these four first genes from its

Chromosome and adjusts its energy-household according to these values. The

genes are interpreted as shown in the following table 1.

 Gene 0 Energy level at birth

 Gene 1 Energy threshold for

reproduction

 Gene 2 Energy gain for eating entities

 Gene 3 Energy usage per move

Table 1: Genes determining the energy of the entity

 Predators and Preys have different appearances. This is necessary in order to

give them a chance to distinguish between friends and foes. Every entity can see

its Moore-neighborhood. For the eight cells surrounding the entity, it gets the

information whether a predator, or a prey, or no entity is on the neighboring cell.

 This information is passed into the neural network. The output of the neural

network is interpreted as a move to one of the neighboring cells. See figure 3.

� NeuralNetFeedForward

The base NeuralNet class is a

virtual base class. It provides an

interface for all neural network

classes, but it does not

implement any neural network

itself. In order to get a useful

neural network, we have to

reimplement it in an inherited

class. On of these inherited

classes is

NeuralNetFeedForward.

NeuralNetFeedForward provides

a fully connected feed-forward

network with one hidden layer.

The network does not do any

online learning[7]. The weights

of the network solely depend on

the Chromosome, where every

float-numbered gene on the

chromosome-string is interpreted

as the weight of a corresponding

network node. This, of course, is

not a very effective way for encoding a neural network, but we will use it in this

example anyway. If we would want to use a more sophisticated network with our

simulation, we could simply exchange NeuralNetFeedForward for a different

implementation. Whenever the Predator resp. Prey has to act, it calls its

NeuralNetFeedForward with the information of its surrounding cells represented

as a string of numbers. These numbers

are taken as the activation values of the

input nodes of the neural network. The

output values are calculated by the

network, and are passed back to the

body.

� Chromosome and CellularAutomaton

These classes do not have to be

changed for our simulation. We use the

standard two-dimensional cellular

automaton with asynchronous updates,

and the generic chromosome with one-

point crossover.

Running the Simulation Figure 4 shows a

screenshot of the simulation in action. Since

this simulation is just an example, we will not

go into the details of the results of the

simulation. It should be noted, though, that

although the neural network encoding

scheme is very poor, we can observe some

improvement in the behavior of the entities.

There is a second phenomenon to observe

which is more interesting. A general problem

Figure 4: Screenshot of the running

predator/prey-simulation. The

predators are the darker entities, the

preys are painted in a lighter color.

Figure 5: Evolving a stable eco-system by

making the energy household of the entities

subject to evolution. The two graphs show

the population sizes of the predators and

the preys. After an initial phase, the

population sizes become very stable, with

somewhat more preys than predators on

the automaton.

of low-scale simulation of ecological systems like this is that these systems usually

are not stable. Within a view generations, one of the populations dies out and the

whole ecological system breaks down. In this simulation, we found a surprising way

to give these kinds of systems stability: When we make also the energy household

of the entities (the first four genes of the entity as shown in table 1) subject to

evolution, we get a stable systems! Figure 5 shows how the population sizes of the

predator- and prey-populations reach a stable level.

3.2 More Examples

In the next examples, we will give some glimpse onto the flexibility of ALE. We will

show how it can be used to construct simulations that are quite different to the

BUGS-like scenarios shown before. Next, we will show how the traditional Game of

Life as described by Conway [3] can be implemented in ALE.

3.2.1 Game of Life

Again, we create a new subclass of Body. We call it Body2dLife. These entities

never move. They stay in their cell, and only change their appearance between two

different states. One state indicates “living”, the other state indicates “dead”. The

entities use their neural network to decide which state to enter: They examine their

neighborhood and calculate how many cells are living around them. This number is

fed into the network, and the network output is interpreted as the new state of the

entity. So the rules of the game

depend on the implementation of

the network. In this example, we

write a new neural network

implementation called

NeuralNetConways, which

implements Conway's rules. To be

honest, we do not use a real

neural network for this. This

“neural network” is simply a set of

if-than-clauses in the form of “if

the input value is two or three and

the current state is `alive´, output

is `alive´”. If we wanted to

implement some other rules, we

would simply exchange this

“neural network” for a different

one. Some pictures of the cellular

automaton are shown in figure 6.

There is one more big difference

between this implementation of

two dimensional Game of Life and Conway's original game: Conway uses

synchronous updates, whereas ALE's CellularAutomaton always uses

asynchronous updates. Overcoming this problem is easy. We reimplement the

cellular automaton as the synchronous model, and plug this new cellular automaton

into the simulation.

3.2.2 Genetic Algorithm

In the next example, we will implement a “traditional” genetic algorithm with ALE. A

genetic algorithm runs through the following steps [5]:

Figure 6:Some updates of the (asynchronous)

cellular automaton running Conway's Game of Life.

1. Create a random population.

2. Choose the fittest entities for reproduction.

3. Create a new population by recombining and

mutating the genes of the selected entities.

4. Unless an entity with the desired fitness has

evolved or the maximal number of generations

has been reached, go back to step 2.

In order to implement this algorithm in ALE, we first

have to reimplement the CellularAutomaton as a one-

dimensional model. In the first generation, the first row

of the cellular automaton is filled with entities whose

chromosomes are random. The evolutionary process

is split up into two phases: In the first step, each

entities chooses an other entity to compete against.

The one with the higher fitness survives. In the second

step, these surviving entities choose partners for

reproduction and create a new population. In genetic-

algorithm-terminology, this means that we are using

tournament selection with elitism (the best entity

always survives). Classes Chromosome and

NeuralNet stay unchanged. NeuralNet is not used at

all, and the values of Chromosome are simply

interpreted as a possible solution to the problem

posed to the genetic algorithm. Screenshots of the

genetic algorithm running are shown in figure 7.

4. Technics

Technically, ALE consists of a C++-library and a standalone program. The class

library provides the base classes for the four main ALE building blocks:

CellularAutomaton, NeuralNet, Body, and Chromosome. Additionally, it contains

some inherited class of general use, e.g. the previously mentioned class

NeuralNetFeedForward. The ALE library should compile on any system with a C++-

compiler. It has been successfully compiled on Linux, Solaris, FreeBSD, and BeOS.

The second way to use ALE is via the graphical user interface provided by the

standalone program kale. kale allows the user to graphically interact with the

components of ALE. One's own classes can be loaded dynamically into the

program. kale makes use of the KDE desktop environment.

All parts of ALE are available as free software under the GNU Public License and

can be downloaded from http://www.uni-koblenz.de/gb/ale/.

Please note that ALE is still in alpha-stage.

5 Conclusions

ALE is becoming a flexible tool for the development and examination of artificial life

simulations. It can serve both as a research and an educational tool. For

researchers, the building-block-concept of ALE makes it more easy to exchange

program components and results. Beginners in the field of artificial life get a chance

to get their hands on a flexible simulation tool. kale provides them with a graphical

Figure 7: The two phases of the

genetic algorithm: In the first

phase, the fittest entities are

selected. In the second phase,

the new generation is created.

The third phase is the first phase

again.

user interface that allows them to get their hands directly onto an artificial life tool.

The building-block-concept of ALE allows beginners to start their own work by

changing and improving an existing system.

Reference

[1] Gerd Beuster. Artificial life environment. Master's thesis, University of Koblenz,

1999. http://www.uni-koblenz.de/~gb/ale/studienarbeit_ale.ps.gz.

[2] A. K. Dewdney. Simulated evolution: wherein bugs learn to hunt bacteria.

Scientific American, May 1989.

[3] Martin Gardner. Mathematical games - the fantastic combination of john

conway's new solitaire game of „life“. Scientific American, (223):120-123, October

1970.

[4] Nelson Minar, Roger Burkhart, Chris Langton, and Manor Askenazi. The swarm

simulation system: a toolkit for building multi-agent simulations.

http://www.swarm.org/archive/overview.ps.

[5] Margret Mitchel. An introduction to genetic algorithms. The MIT Press,

Cambridge, Massachusetts, 1996.

[6] Eric S. Raymond, The cathedral and the bazaar. May 2000.

http://www.tuxedo.org/esr/writings/cathedral-bazaar/cathedral-bazaar.html.

[7] Murray Smith. Neural Networks For Statistical Modeling. International Thomson

Computer Press, London, Bonn, Boston, Johannesburg, 1996.

[8] G. Rozenberg V. Diekert. The Book of Traces. World Scientific Publ. Co., 1995.

[9] A. Muscholl V. Dikert. Construction of asynchronous automata, chapter In [8],

pages 249-267. World Scientific Publ. Co., 1995.

