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Abstract. A formalism for the logical description of computational agents and
multi-agent systems is given. It is explained how it such a formal description
can be used to configure and reason about multi-agent systems realizing com-
putational intelligence models. A usage within a real software system Bang 3 is
demonstrated. The logical description of multi-agent systems opens Bang 3 for
interaction with ontology based distributed knowledge systems like the Semantic
Web.

1 Introduction

The use of distributed Multi-Agent Systems (MAS) instead of monolithic programs
has become a popular topic both in research and application development. Autonomous
agents are small self-contained programs that can solve simple problems in a well-
defined domain [1]. In order to solve complex problems, agents have to collaborate,
forming Multi-Agent Systems (MAS). A key issue in MAS research is how to generate
MAS configurations that solve a given problem [2]. In most Systems, an intelligent
(human) user is required to set up the system configuration. Developing algorithms for
automatic configuration of Multi-Agent Systems is a major challenge for AI research.

Bang 3 is a platform for the development of Multi-Agent Systems [3], [4]. Its main
areas of application are computational intelligence methods (genetic algorithms, neu-
ral networks, fuzzy controllers) on single machines and clusters of workstations. Hy-
brid models, including combinations of artificial intelligence methods such as neural
networks, genetic algorithms and fuzzy logic controllers, seem to be a promising and
extensively studied research area [5]. Bang 3 — as a distributed multi-agent system —
provides a support for an easy creation and execution of such hybrid AI models.

Bang 3 applications require a number of cooperating agents to fulfill a given task.
So far, MAS are created and configured manually. In this paper, we introduce a logical
reasoning component for Bang 3. With this component, Bang 3 system configurations
can be created automatically and semi-automatically. The logical description of MAS
opens Bang 3 for interaction with ontology based distributed knowledge systems like
the Semantic Web [6].

The description of Bang 3 by formal logics enhances the construction, testing, and
application of Bang 3-MAS in numerous ways:



– System Checking
A common question in Multi-Agent System design is whether a setup has certain
properties. By the use of formal descriptions of the agents involved in a MAS and
their interactions, properties of the MAS can be (dis-)proved [7].

– System Generation
Starting with a set of requirements, the reasoning component can be used to cre-
ate a MAS. The formal logical component augments evolutionary means of agent
configuration that are already present in Bang 3 [8].

– Interactive System Generation
The reasoning component can also be used to create agents in semi-automated
ways. Here, the reasoning component acts as a helper application aiding a user
in setting up MAS by making suggestions.

– Interaction with ontology based systems
There is a growing interest in creating common logical frameworks (ontologies)
that allow the interaction of independent, distributed knowledge based system.
The most prominent one is the Semantic Web, which attempts to augment the
World Wide Web with ontological knowledge. Using formal logics and reasoning
in Bang 3 allows to open this world to Bang 3.

2 Logical Description of MAS

In order to satisfy these requirements, the logical formalism must fulfill the following
requirements:

1. It must be expressive enough to describe Bang 3 MAS.
2. There must be efficient reasoning methods.
3. It should be suitable to describe ontologies
4. It should interface with other ontology based systems.

There is a lot of research in how to use formal logics to model ontologies. The goal
of this research is to find logics that are both expressive enough to describe ontological
concepts, and weak enough to allow efficient formal reasoning about ontologies.

The most natural approach to formalize ontologies is the use of First Order Predicate
Logics (FOL). This approach is used by well known ontology description languages like
Ontolingua [9] and KIF [10].

The disadvantage of FOL-based languages is the expressive power of FOL. FOL
is undecidable [11], and there are no efficient reasoning procedures. Nowadays, the
de facto standard for ontology description language for formal reasoning is the family
of description logics. Description logics are equivalent to subsets of first order logic
restricted to predicates of arity one and two [12]. They are known to be equivalent to
modal logics [13].

For the purpose of describing multi-agent systems, description logics are sometimes
too weak. In these cases, we want to have a more expressive formalism. We decided to
use Prolog-style logic programs for this. In the following chapters, we describe how
both approaches can be combined together.



Description logics and Horn rules are orthogonal subsets of first order logic [12].
During the last years, a number of approaches to combine these two logical formalisms
in one reasoning engine have been proposed. Most of these approaches use tableaux-
style reasoners for description logics and combine them with Prolog-style Horn rules. In
[14], Hustadt and Schmidt examined the relationship between resolution and tableaux
proof systems for description logics. Baumgartner, Furbach and Thomas propose a com-
bination of tableaux based reasoning and resolution on Horn logic [15]. Vellion [16]
examines the relative complexity of SL-resolution and analytic tableau. The limits of
combining description logics with horn rules are examined by Levy and Rousset [17].
Borgida [18] has shown that Description Logics and Horn rules are orthogonal subsets
of first oder logic.

3 Describing Bang 3 Agents

An agent is an entity that has some form of perception of its environment, can act, and
can communicate with other agents. It has specific skills and tries to achieve goals. A
Multi-Agent System (MAS) is an assemble of interacting agents in a common environ-
ment [19].

In order to use automatic reasoning on a MAS, the MAS must be described in formal
logics. For the Bang 3 system, we define a formal description for the static characteris-
tics of the agents, and their communication channels. We do not model dynamic aspects
of the system yet.

Bang 3 agents communicate via messages and triggers. Messages are XML docu-
ments send by an agent to another agent. A triggers are XML patterns with an asso-
ciated function. When an agent receives a message matching the XML pattern of one
of its triggers, the associated function is executed. In order to identify the receiver of a
message, the sending agent needs the message itself and a link to the receiving agent.
A conversation between two agents usually consists of a number of messages. For ex-
ample, when a neural network agent requests training data from a data source agent, it
may send the following messages:

– Open the data source located at XYZ,
– Randomize the order of the data items,
– Set the cursor to the first item,
– Send next item.

These messages belong to a common category: Messages requesting input data from
a data source. In order to abstract from the actual messages, we subsume all these mes-
sages under a message type when describing an agent in formal logics.

Definition 1. Message type
A message type identifies a category of messages that can be send to an agent in order
to fulfill a specific task. We refer to message types by unique identifiers.

The set of message types understood by an agent is called its interface. For outgoing
messages, each link of an agent is associated with a message type. Via this link, only
messages of the given type are sent. We call a link with its associated message type a
gate.



Definition 2. Interface
An interface is the set of message types understood by a class of agents.

Definition 3. Gate
A gate is a tuple consisting of a message type and a named link.

Now it is easy to define if two agents can be connected: Agent A can be connected
to agent B via gate G if the message type of G is in the list of interfaces of agent
B. Note that one output gate sends messages of one type only, whereas one agent can
receive different types of messages. This is a very natural concept: When an agent
sends a message to some other agent via a gate, it assigns a specific role to the other
agent, e.g. being a supplier of training data. On the receiving side, the receiving agent
usually should understand a number of different types of messages, because it may have
different roles for different agents.

Definition 4. Connection
A connection is described by a triple consisting of a sending agent, the sending agent’s
gate, and a receiving agent.

Next we define agents and agent classes. Bang 3 is object oriented. Agents are cre-
ated by generating instances of classes. An agent derives all its characteristics from its
class definition. Additionally, an agent has a name to identify it. The static aspects of an
agent class are described by the interface of the agent class (the messages understood
by the agents of this class), the gates of the agent (the messages send by agents of this
class), and the type(s) of the agent class. Types are nominal identifiers for characteris-
tics of an agent. The types used to describe the characteristics of the agents should be
ontological sound.

Concepts
mas(C) C is a Multi-Agent System
class(C) C is the name of an agent class
gate(C) C is a gate
m type(C) C is a message type

Roles
type(X,Y) Class X is of type Y
has gate(X,Y) Class X has gate Y
gate type(X,Y) Gate X accepts messages of type Y
interface(X,Y) Class X understands mess. of type Y
instance(X,Y) Agent X is an instance of class Y
has agent(X,Y) Agent Y is part of MAS X

Table 1. Concepts and roles used to describe MAS.

Definition 5. Agent Class
An agent class is defined by an interface, a set of message types, a set of gates, and a
set of types.



class(decision tree)
type(decision tree, computational agent)
has gate(decision tree, data in)
gate type(data in, training data)
interface(decision tree, control messages)

Fig. 1. Example agent class definition.

Definition 6. Agent
An agent is an instance of an agent class. It is defined by its name and its class.

4 Describing multi-agent systems

Multi-Agent Systems are assembles of agents. For now, only static aspects of agents are
modeled. Therefore, a Multi-Agent System can be described by three elements: The set
of agents in the MAS, the connections between these agents, and the characteristics of
the MAS. The characteristics (constraints) of the MAS are the starting point of logical
reasoning: In MAS checking the logical reasoner deduces if the MAS fulfills the con-
straints. In MAS generation, it creates a MAS that fulfills the constraints, starting with
an empty MAS, or a manually constructed partial MAS.

Definition 7. Multi-Agent System
Multi-Agent Systems (MAS) consist of a set of agents, a set of connections between

the agents, and the characteristics of the MAS.

Description logics know concepts (unary predicates) and roles (binary predicates).
In order to describe agents and Multi-Agent Systems in description logics, the defini-
tions 1 to 7 are mapped onto description logic concepts and roles as shown in table 1.

An example agent class description is given in figure 1. It defines the agent class
“decision tree”. This agent class accepts messages of type “control message”. It has
one gate called “data in” for data agent and emits messages of type “training data”.

In the same way, A-Box instances of agent classes are defined:

instance(decision tree, dt instance)

An agent is assigned to a MAS via role “has agent”. In the following example, we
define “dt instance” as belonging to MAS “my mas”:

has agent(my mas, dt instance)

Since connections are relations between three elements, a sending agent, a sending
agent’s gate, and a receiving agent, we can not formulate this relationship in traditional
description logics. It would be possible to circumvent the problem by splitting the triple
into two relationships, but this would be counter-intuitive to our goal of defining MAS
in an ontological sound way. Connections between agents are relationships of arity
three: Two agents are combined via a gate. Therefore, we do not use description logics,
but traditional logic programs in Prolog notation to define connections:



connection(dt instance, other agent, gate)

Constraints on MAS can be described in Description Logics, in Prolog clauses, or
in a combination of both. As an example, the following concept description requires the
MAS “dt MAS” to contain a decision tree agent:

dt MAS w mas u has agent.(∃instance.decision tree)

An essential requirement for a MAS is that agents are connected in a sane way:
An agent should only connect to agents that understand its messages. According to
definition 4, a connection is possible if the message type of the sending agent’s output
gate matches a message type of the receiving agent s interface. With the logical concepts
and descriptions given in this section, this constraint can be formulated as a Prolog style
horn rule. If we are only interested in checking if a connection satisfies this property,
the rule is very simple:

connection(S,R,G)←
instance(R, RC) ∧
instance(S, SC) ∧
interface(RC, MT)∧
has gate(SC, G) ∧
gate type(G, MT)

The first two lines of the rule body determine the classes RC and SC of the sending
agent S and the receiving agent R. The third line instantiates MT with a message type
understood by RC. The fourth line instantiates G with a gate of class SC. The last line
assures that gate G matches message type MT .

The following paragraphs show two examples for logical descriptions of MAS. It
should be noted that these MAS types can be combined, i.e. it is possible to query for
trusted, computational MAS.

Computational MAS A computational MAS can be defined as a MAS with a task
manager, a computational agent and a data source agent which are interconnected
(cf. Fig. 2):

comp MAS(MAS)←
type(CAC, computational agent)∧
instance(CA, CAC)∧
has agent(MAS, CA)∧
type(DSC, data source)∧
instance(DS, DSC)∧
has agent(MAS, DS)∧
connection(CA, DS, G)∧
type(TMC, task manager)∧



instance(TMC, TM)∧
has agent(MAS, TM)∧
connection(TM, CA, GC)∧
connection(TM, DS, GD)

Trusted MAS We define that an MAS is trusted if all of its agents are instances of
a “trusted” class. This examples uses the Prolog predicate findall. findall
returns a list of all instances of a variable for which a predicate is true. In the defini-
tion of predicate all_trusted the usual Prolog syntax for recursive definitions
is used.

trusted MAS(MAS)←
findall(X, has agent(MAS,X), A))∧
all trusted(A)

all trusted([])← true
all trusted([F|R])←

instance(F,FC)∧
type(FC, trusted) ∧
all trusted([R])

5 Implementation

The above described concepts and algorithms are implemented within the Bang 3 soft-
ware system as the BOA agent. This agent works with ontological description files of
the two kinds: the Description Logics description of agent hierarchies, their gates, inter-
faces and message types, and the Prolog clauses describing more complicated properties
and concepts, such as the form of computational MAS, or the notion of trust.

5.1 Computational multi-agent systems

In this section we give examples of two MAS schemes describing the computational
MAS definition from section 4.

Figure 2 shows an example of the most simple computational MAS in Bang 3 which
consists only of the computational agent, data and a task manager (which can be a user
interacting via GUI, or more complicated agent performing series of experiments over
a cluster of workstations).

A more typical computational MAS configuration is shown on figure 3. There are
two more complicated computational agents, the RBF neural network (RBF) and the
Evolutionary algorithm (EA) agent, that cooperate with each other within a computa-
tional MAS. Each of these two agents can itself be seen as a MAS employing several
simpler agents to solve a given task. In the case of the RBF network, typically, an un-
supervised learning (vector quantization), and a supervised learning (gradient, matrix
inverse) agent is needed. The evolutionary algorithm agent makes use of fitness (shaper)
and probabilities manager (tuner). The cooperation of RBF and EA is more intricate and
takes place via the fitness and chromozome agents.



Fig. 2. Example of a small computational MAS consisting of a Task Manager agent, Data Source
agent, and a computational agent (Multilayer Perceptron).

5.2 MAS descriptions

Descriptions of the above shown — and similar — MASes are generated by the BOA
agent in a formal description language. This description is then sent to the MAS man-
ager agent, which is able to take care of physical creation of the whole system. This
includes creating suitable agents (either new ones, or reusing free existing ones, or even
finding suitable ones by means of ontology services), linking their gates and interfaces,
sending them appropriate initialization messages, etc. This is typically followed by an
(automated) trial and evaluation of the computational MAS on a particular data set.

Another way of BOA work, which is currently being developed, is an integration
with GUI MAS designer, where BOA invalidates connections that are not correct, and
suggests suitable partners for a connection.

Figure 5 demonstrates the above described ideas on the actual implementation of the
agents hierarchy description in the RACER Lisp-like syntax. For the sake of simplicity,
only the Decision Tree and RBF Neural Network are shown with several intermediate
concepts missing. The complete description is included in [20].

6 Conclusion

We have shown how formal logics can be used to describe computational MAS. We
presented a logical formalism for the description of MAS. In this, we combined De-
scription Logics with traditional Prolog rules. The system we implemented allows the
practical application of these technologies. We have demonstrated how this approach
works in practice within the hybrid computational environment Bang 3.

So far, we only describe static aspects of MAS. Further research will be put in
the development of formal descriptions of dynamic aspects of MAS. In particular,
this means to work with ontological description of tasks and to gather knowledge



Fig. 3. Example of a more complicated computational MAS consisting of a Task Manager agent,
Data Source agent, and a suite of cooperating computational agents (an RBF network agent and
Evolutionary algorithm agent with necessary additional agents).

about computational agents performance. Currently within Bang 3, there is a BDI-based
mechanism that supports decisions of a computational agent based on its previous ex-
perience. This will blend smoothly with our approach, which in turn allows to provide
more suitable MAS solutions. In particular, if there are more agents satisfying the con-
strains, we will be able to sort them according to their past performance in the required
context. Thus, better partners for an agent can be supplied. Further in the future we plan
to employ proactive mechanisms for an agent (again BDI-based), which will be allowed
to improve its knowledge in its free time, such as trying to solve benchmark tasks and
recording the results.

The hybrid character of the system, with both a logical component and soft comput-
ing agents, also makes it interesting to combine these two approaches in one reasoning
component. In order to automatically come up with feasible hybrid solutions for spe-
cific problems, we plan to combine two orthogonal approaches: a soft computing evo-
lutionary algorithm with a formal ontology-based model. So far, in [8] we have tried
the isolated evolutionary approach, and the results, although satisfiable, are difficult to
scale up to larger configurations. We expect synergy effects from using formal logics to
aid evolutionary algorithms and vice versa.



Fig. 4. The BOA agent generates a MAS configuration description and sends it to the MAS man-
ager agent, which takes care of MAS creation and run. They both query the BOS ontology ser-
vices agent.
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