
FMIS 2006

Guaranteeing Consistency in Text-Based
Human-Computer-Interaction

Bernhard Beckert 1

Department of Computer Science
University Koblenz-Landau

Koblenz, Germany

Gerd Beuster 2,3

Department of Computer Science
University Koblenz-Landau

Koblenz, Germany

Abstract

Wrong assumptions about the state of the computer system are a main source
of error in human-computer interaction. We show how consistency requirements
between the state of a computer system and the user’s assumptions about the
state can be formally defined. The definition of HCI consistency is used to show
correctness of a methodology to ensure consistency for TTY-based applications.

Key words: Formal Methods, Security, HCI

1 Introduction

Security of interactive systems critically depends on correct display of the
system’s state. Only if the user’s assumptions about the state of the system
are correct, can he make informed decisions about the further course of action.
Informally, a system is consistent if the user’s assumptions about the system
correspond to the actual system state whenever he interacts with the system.
There are two main sources for wrong assumptions about system state leading
to inconsistent systems:

1 Email: beckert@uni-koblenz.de
2 Email: gb@uni-koblenz.de
3 This work was partially funded by the German Federal Ministry of Education, Sci-
ence, Research and Technology (BMBF) in the framework of the Verisoft project un-
der grant 01 IS C38. The responsibility for this article lies with the authors. See
http://www.verisoft.de for more information about Verisoft.

This paper has been presented at the
1st International Workshop on Formal Methods for Interactive Systems

URL: fmis.iist.unu.edu

Beckert, Beuster

• Inconsistency during updates
Human-Computer Interaction is inherently asynchronous. Execution of

user commands and updates of the data displayed by the output device take
time. Due to the inherently asynchronous character of Human-Computer
Interaction, the user may err about the system state; either because com-
mands have not been executed yet, or because the screen has not been
updated.

• Insufficient information or wrong interpretation of data
The system may not provide enough information to determine the system

sate, or the user may interpret application output wrongly. A large part of
the specification of interactive applications is concerned with the relation
between user input and the information shown to the user. For example,
when editing a text, the current (internal) state of the text should be shown
to the user, and user input should cause changes to the text. Usually, the
specification of user input and system output is rather informal. Specifica-
tions declare that something “is shown on the screen” and the user “enters
a text.” In most cases, this informal description is sufficient. However, in
security-critical applications, a precise and formal definition is desirable.

The second point, wrong interpretation of data, is addressed in a number
of works. Reeder and Maxion [21] analyzed the problem of representing NTFS
file permissions on Windows XP systems and developed the design principle
of “anchor-based subgoaling” in order to mitigate the problem.

In this work, we address the first source of errors, inconsistencies during
updates. Most user interface security requirements are highly application
specific. However, there are also some generic requirements. We show that for
a large class of applications, it is possible to define generic requirement in a
formal way. In this paper, we focus on one of these generic requirements: The
user should always be aware of the system state when he issues a command.
We show how consistency during updates can be guaranteed for text-based
applications.

In Section 4 we develop a formal definition of consistency based on the
generic computer security requirement of application Integrity. In Section 5,
we show that the common approach to model interactive applications does not
guarantee consistency. We provide an alternative model for which consistency
can be guaranteed. In Sections 6 and 7, a generic specification template for
interactive applications that guarantee consistency in HCI is presented. In
this paper, we consider text-based user interfaces only, but our methods can
be extended for handling graphical user interfaces. In the Verisoft project
(http://www.verisoft.de), our methods are applied to specify and verify
an email system.

2

http://www.verisoft.de

Beckert, Beuster

2 Related Work

We build upon work on formal methods for developing computing systems,
human-computer interaction (HCI) research, and secure system design.

Formal methods, human computer interaction, and security are established
fields of computer science research. There is also work combining each two
of these fields. Formal methods have been used to specify human-computer
interaction. User interfaces have been designed and evaluated under security
aspects. System security has been treated with formal methods. In this work,
we combine all three fields.

Abowd et al. [1] and Jain [15] give a survey of formal languages for the
description of user interfaces. More overviews are given in two (different)
books called Formal Methods in Human-Computer Interaction [13,19]. An
early contribution to formal methods for the description of user interaction is
the PIE model, developed by Dix and Runciman [9]. In this model, system
behavior is defined as a function from commands issued by the user to effects
produced by the system. In case of a text-based user interface, the input
is a sequence of keystrokes and the output are characters displayed on the
screen [8].

Carr’s Interaction Object Graphs (IOG) are an extension of statecharts
for modeling elements of graphical user interfaces and their interactions [4].
It allows a description both on the pixel-level and on an aggregated level.
IOGs focus on graphical user interfaces, and the language used to describe
them is directly executable. The formalism of IOG allows basic reasoning
tasks like testing for reachability of all states. Statecharts are also used by
Degani et al. for specification of the interaction interfaces between human users
and machines, addressing the question what information about a machine’s
state is required in order to operate it safely [6].

Sucrow [23] uses graph grammars to describe graphical user interface ele-
ments. Changes in the GUI are modeled by re-write rules. Palanque et al. [18]
use hierarchical Petri nets to combine user models and a system models of in-
teractive systems. Berstel et al. developed “Visual Event Grammars” (VEG),
a formal method for the specification and validation of graphical user inter-
faces [2]. They describe complex graphical user interface as communicating
automata.

PIE and similar formalisms put an emphasis on describing the I/O be-
havior of a computer system and are suitable for automated reasoning, e.g.
with model checkers. Rushby uses model checking in order to detect poten-
tial discrepancies between system behavior and the mental models of system
users [22].

Other approaches like Task Knowledge Structures (TKS) [12], (Extended)
Task Action Grammar ((E)TAG) [5], and Goals Operators Methods Selection-
rules (GOMS) [16] focus on providing cognitive models of the user. TKS
provides an explicit representation of the cognitive model of the user. TAG

3

Beckert, Beuster

allows a precise formal description of the user actions, the user’s knowledge and
the user’s internal representation of the system (what the user thinks about
the system). GOMS is more oriented towards psychological analysis of user
behavior and timed measurement of user activity. A major weakness of GOMS
is that it is limited to sequential user plans, and that it does not provide means
to generate application specifications from user models. ConcurTaskTrees [20],
developed by Paterno et al., provides a richer formalism for the description of
user behavior and generation of application specifications. Harrison et al. [27]
use formal methods to derive requirements for human-error tolerance from
task descriptions.

A general weakness of these formal HCI models is that they require de-
tailed models of the user behavior in order to model the interaction between
a computer system and a user. While computer systems can (and should) be
formally specified, a formal user model is always based on assumptions about
the user which may or may not be true. The approach presented in this we
paper make no unnecessary assumptions about the user.

In [13], Dix and Harrison develop the concept of “State Display Confor-
mance” which is closely related to the consistency requirements developed in
this paper. It should be noted that Grudin’s argument against user interface
consistency requirements [11] does not apply to the work presented in this
paper. He argues that consistency defined as having similar user interface
elements for similar functionality can not be generalized, because similarity
depends on context. Our work however does not address consistency within
a user interface, but consistency between a user’s mental representation of a
system state and the actual system state.

In a number of works, formal specification methods like Z have been applied
to user interface design. One of the first formal specifications of interactive
components was the specification of a text editor in Z in Sufrin’s paper Formal

specification of a display editor [24]. Based on Sufrin’s specification, Booth
and Jones implemented an editor in the Miranda functional programming
language [3]. Goldson [10] and Hussey/Carrington [14] provide more case
studies in using Z for user interface specification.

3 Notation

We specify the abstract behavior of system components by Input Output La-
beled Transition Systems (IOLTS) and Linear Temporal Logic (LTL). Below,
we define these concepts and some related notions used throughout this paper.

Definition 3.1 A Labeled Transition System (LTS) is a tuple L = (S,Σ, s0,→)
where S is a set of states, s0 ∈ S is an initial state, Σ is a set of labels,
and → ⊆ S × Σ × S is a transition relation. We use the notation p

σ
−→ q for

(p, σ, q) ∈ →.

Definition 3.2 An Input Output Labeled Transition System (IOLTS) is an

4

Beckert, Beuster

Σ? Σ!
s0

s2 s3s1

σ?

σ!σ!

s5 s6s4

σ?

σ!σ!

Fig. 1. State Transition Diagram representation of an IOLTS.

LTS L = (S,Σ, s0,→) with Σ = Σ? ∪ Σ! ∪ ΣI . We call Σ? the input alphabet,
Σ! the output alphabet, and ΣI the internal alphabet.

We use state transition diagrams to visualize IOLTS. An example is shown
in Figure 1.

The combination of two IOLTSs La and Lb where the output alphabet
of La is the input alphabet of Lb is called a composition:

Definition 3.3 Let La = (Sa,Σa, s0a,→a), Lb = (Sb,Σb, s0b,→b) be two IOLTS
with Σ!a = Σ?b. The composition (La||Lb) = (S,Σ, s0,→) of La and Lb is de-
fined by:

S =S0 × S1

Σ? =Σ?a

Σ! =Σ!b
ΣI =ΣI a ∪ ΣI b ∪ Σ!a
s0 =(s0a, s0b)

→= {((sa, sb), σ, (s
′

a
, sb)) | sa

σ
−→a s

′

a
with σ ∈ Σ?a ∪ ΣI a} ∪

{((sa, sb), σ, (sa, s
′

b
)) | sb

σ
−→b s

′

b
with σ ∈ Σ!b ∪ ΣI b} ∪

{((sa, sb), σ, (s
′

a
, s′

b
)) | sa

σ
−→a s

′

a
and sb

σ
−→b s

′

b
with σ ∈ Σ!a = Σ?b}

Often, components are combined by mutual composition. In mutual com-
position, the output of La serves as input for Lb, and the output of Lb serves
as input of La (this is illustrated in Figure 2).

Definition 3.4 Let La = (Sa,Σa, s0a,→a) and Lb = (Sb,Σb, s0b,→b) be IOLTS.

We assume the input and output alphabets of La and Lb to consist of
internal and external subsets, where the internal input is denoted with Σ?I ,
the external input with Σ?I , the internal output with Σ!I , and the external
output with Σ!E . And we demand that these subsets are chosen such that
Σ!I a = Σ?I b and Σ!I b = Σ?I a.

Then, the mutual composition (La||mLb) = (S,Σ, s0,→) of La and Lb is
defined by:

5

Beckert, Beuster

Σ!Ia

B

Σ?Ea Σ?Eb

A

Σ!EbΣ!Ea

Σ!Ib

Fig. 2. Mutual composition of IOLTSs.

S =S0 × S1

Σ? =Σ?E a ∪ Σ?E b

Σ! =Σ!E a ∪ Σ!E b

ΣI =ΣI a ∪ ΣI b ∪ Σ!I a ∪ Σ!I b

s0 =(s0a, s0b)

→= {(sa, sb), σ, (s
′

a
, sb)) | sa

σ
−→a s

′

a
with σ ∈ Σ?E a ∪ Σ!E a ∪ ΣI a} ∪

{(sa, sb), σ, (sa, s
′

b
)) | sb

σ
−→b s

′

b
with σ ∈ Σ?E b ∪ Σ!E b ∪ ΣI b} ∪

{(sa, sb), σ, (s
′

a
, s′

b
)) | sa

σ
−→a s

′

a
and sb

σ
−→b s

′

b
with

σ ∈ Σ!I a ∪ Σ!I b = Σ?I b ∪ Σ?I a}

The input/output behavior of a component is described by traces, which
are (possibly infinite) sequences of elements from the alphabet Σ, and paths,
which are corresponding sequences of states.

Definition 3.5 Let L = (S,Σ, s0,→) be an IOLTS. Then, a path is a sequence
〈s0, s1, . . . 〉 of states from S with si → si+1 for all i ≥ 0. A trace (of L) is a
sequence 〈σ0, σ1, . . . 〉 of elements of Σ such that there is a path 〈s0, s1, . . . 〉

with si

σi−→ si+1 (i ≥ 0).

We use Linear Temporal Logic (LTL) to describe properties of components.
The syntax of LTL is defined as usual, i.e., given a set P of atomic propositions,
LTL formulae φ are constructed inductively by:

φ ::= p|φ ∨ φ|φ ∧ φ|¬φ|Xφ|φUφ|Gφ|Fφ (p ∈ P)

Now, we can use IOLTSs to interpret LTL formulas—in combination with
valuations λ that map atomic propositions to the states in which they are
true. The satisfaction relation is extended to more complex formulae as usual.

Definition 3.6 Given an IOLTS L = (S,Σ, s0,→) and a set P of atomic
propositions, a valuation λ is a mapping from P to S. An atom p is said
to be true in s ∈ S iff s ∈ λ(P).

6

Beckert, Beuster

Given a path c = 〈s0, s1, . . .〉, by ci we denote the sub-path of c starting
at si.

Whether an LTL formula φ is satisfied by a path c and a valuation λ,
denoted by L, λ, c |= φ, is inductively defined as follows:

• L, λ, c |= >

• L, λ, c |= φ if φ ∈ P and s0 ∈ λ(φ)

• L, λ, c |= ¬φ if not L, λ, c |= φ

• L, λ, c |= φ ∧ ψ if L, λ, c |= φ and L, λ, c |= ψ

• L, λ, c |= φ ∨ ψ if L, λ, c |= φ or L, λ, c |= ψ

• L, λ, c |= Xφ if L, λ, c1 |= φ

• L, λ, c |= φUψ if (a) L, λ, c |= ψ or (b) there is some i ≥ 1 s.t. L, λ, ci |= ψ

and L, λ, ck |= φ for all 0 ≤ k < i

• L, λ, c |= Gφ if L, ci |= φ for all i ≥ 0

• L, λ, c |= Fφ if L, ci |= φ for some i ≥ 0

An LTL formula φ is said to be satisfied by a valuation λ, denoted by
L, λ |= φ, iff L, λ, c |= φ for all paths c of L. And φ is said to be satisfied by L,
denoted by L |= φ iff L, λ |= φ for all valuations λ.

4 Formal Definition of User Interface Integrity

The aim of computer security is to guarantee access to services and resources
to authorized persons, while preventing access and manipulation by unautho-
rized parties. The basic security threats are Data Leaking, Data Manipulation,
and Program Manipulation [7]. These are countered by the core security re-
quirements, usually abbreviated as CIA:

Confidentiality: Information is available to authorized parties only.

Integrity: Both the assumptions of the user about the application, and the
assumptions of the application about the user are correct.

Availability: Accessibility of services and data is guaranteed.

Adapting these concepts to user interface security is straightforward:

HCI Confidentiality: No secret information is leaked via the user interface.

HCI Integrity: There is a correspondence between the configuration of the
application (defined by its internal state and data), and the user’s assump-
tion about the data and the state.

HCI Availability: The user interface must guarantee reachability of desir-
able states, and it must prevent user interactions that lead to transitions
into undesirable states.

In the following, we concentrate formalizing the integrity requirement. Infor-
mally, we define HCI Integrity as follows:

7

Beckert, Beuster

CMDAppOut

User

Application

Fig. 3. Basic System (User + Application) Model

Definition 4.1 HCI Integrity: Whenever the user makes a critical decision,
all critical properties are the same in the application and the user’s assumption
about the application.

In order to maintain a most general view on all possible applications and
user models, we do not define what constitutes critical properties and their
correct interpretation by the user. We only assume that there are critical
properties, and that the user may or may not have correct assumptions about
them. We assume that in all critical states atomic proposition critical holds,
and that there are atomic propositions a0, . . . , an representing critical prop-
erties of the application, and u0, . . . , un representing the user’s assumptions
about these properties. With these definitions, HCI Integrity is defined by the
LTL formula

G(critical → ((a0 ↔ u0) ∧ (a1 ↔ u1) ∧ · · · ∧ (an ↔ un))) (1)

The definition of a0, . . . , an and u0, . . . , un depends on the actual application
and user models. For given user and application models, automated reasoning
techniques (e.g., model checking) can be used to check if the HCI Integrity
formula holds.

5 Guaranteeing Integrity

In the last Section, we developed a formal definition of integrity. In order to
apply the definition, suitable user and application models and definitions of a
valuation function λ must be provided. In this Section, we use the methodol-
ogy to deduce required properties of a generic class of text-based user inter-
face. Based on this, a specification of a main execution loop for this class of
applications is developed in Section 6.

In a generic model of a TTY application, one user interacts with one
application. A keyboard is used as the input device and a TTY screen as the
output device. This model is depicted in Figure 3. Two types of messages are
used to exchange information between the user and the application: AppOut is
the data type for information shown on the screen. CMD is the data type for
input given by the user. This model can be further structured without losing

8

Beckert, Beuster

Show
Result

Execute

Get
Result

Act

User Logic
AppOut

CMD

Get
Command

CMDAppOut

AppOut!AppOut?

CMD!

Decide Classify

Application Execution Cycle

User Execution Cycle

AppOut

CMD

Application Logic

Wait

AppOut!

CMD?

CMD!

AppOut?

CMD?

Fig. 4. Basic generic model of user and application.

generality. All well-designed applications (and all reasonable models of user
behavior) split up the components into a generic execution loop, governing the
general behavior of the application (or the user), and an application (task)
specific component. The separation of a generic execution loop and a task
specific component serves two purposes: It follows established system design
practice and therefore allows realistic modeling of applications. Secondly, the
separation in a generic and an application specific component allows to deduce
properties that hold for all applications following this design, independent of
the concrete application’s task.

A basic model following this approach is shown in Figure 4. In this model,
AppOut and CMD are variables representing all possible command input and
application output. Question marks after variable names indicate reading of
an input value, and exclamation marks indicate writing of an output value.
Thus, in one cycle of application execution the following steps are taken:

The application waits for the user to enter a command (GetCommand
CMD?
−−−→

Execute). The command is processed by application logic (Execute
CMD!
−−−→

GetResult, GetResult
AppOut?
−−−−−→ ShowResult), and the result of the computation

is forwarded to the output device (ShowResult
AppOut!
−−−−−→ GetCommand). In the

same way, the user reads application output, evaluates which command should
be issued next, and enters the command into the input device.

This basic model already allows to deduce interesting properties in respect
to Integrity constraints. A reasonable assumption is that all decisions made

9

Beckert, Beuster

a

cmdA?

b

cmdB?

cmdA?

a

b

showB?

cmdB!

showA?

showA?

cmdA!

showB?

showA!

showB!

cmdB?AppOut

CMD

AppOut

CMD

Application LogicUser Logic

Fig. 5. Simple Logic Modules.

AppExec UserExec AppLogic UserLogic AppOut CMD

ShowResult Wait a b - -

GetCommand Wait a b showA -

GetCommand Classify a b showA -

GetCommand Decide a a showA -

GetCommand Act a a showA -

GetCommand Wait a a showA cmdB

Execute Wait b a showA -

Execute Classify b a showA -

Execute Decide b a showA -

Fig. 6. Refutation of näıve model (excerpt)

by the user are critical::

λ(critical) = {UserExeCyc.Decide}

Critical properties of an application, and user assumptions about critical prop-
erties, always depend on the user and application model. We provide most
simple definitions of these components in order to show a general weakness
of the näıve application and user execution cycle model. In this most simple
component definition, there are only two commands, two application outputs,
and two states in both the user and application logic model. These logic mod-
els are shown in Figure 5. As the security relevant property, we define the
question whether the application is in state “a”:

λ(a0) = {AppLogic.a}

λ(u0) = {UserLogic.a}

Integrity is not guaranteed for this model. The problem lies in the lack of
consistency, as the trace given in Figure 6 shows: When the user decides about

10

Beckert, Beuster

CMDAppOut

User

Application

Busy

Show
Result

Execute

Get
Result

Escaped

Begin
Wait

End
WaitAct

User Logic
AppOut

CMD

‘‘Processing’’

‘‘Processing’’

‘‘Processing’’

ESC

‘‘Waiting’’

ESC

Escape

Get
Command

‘‘Waiting’’

AppOut!AppOut?

CMD!

Decide Classify

Application Execution Cycle

User Execution Cycle

AppOut

CMD

Application Logic

AppOut!=

AppOut?=

AppOut?6=

CMD?=

AppOut!=

CMD?6=

AppOut?=

AppOut!

CMD?

CMD!

“ESC”!

Fig. 7. Refined Model

the next command for the second time, he does not recognize that execution
of the first command has not been completed.

The system model is not a model for Formula 1, because the application
configuration may change while the user issues a command. This problem is
well known from real-world computer systems: if the user does not know if a
command has been executed, he may be tempted to re-issue the command,
resulting in double execution of the command. In the worst case, this can
lead to a security problem, for example when the user accidentally confirms a
critical action twice. Next, we show a solution for the problem. In Section 6,
we apply the solution to a real-world program specification.

The problem can be solved by introducing new states for synchronization,
as shown in Figure 7. In this model, the system gives visual feedback indi-
cating whether it is waiting for user input or processing user input. Once the
application received a user command, it shows “processing” on the screen.
When processing is finished, the new application status is shown. Just show-
ing the message “processing” while executing user commands is not sufficient,
however. Depending on execution speed, the user may not recognize the mes-
sage “processing” at all (because it was shown for a very short amount of
time), our it may take a long time before the message is shown (in case the
system is slow). In order to give the user the ability to distinguish between
the two cases, an escape-key is introduced. If the user pushes the escape-key,
the message “waiting” is shown. This way, if the user does not know about
the state of the input process, he can press “escape” and wait for the message
“waiting” to show up. The model given in Figure 7 satisfies the integrity

11

Beckert, Beuster

constraint of Formula 1.

While it is perfectly fine to change the specification of the application, one
may ask if it is acceptable to change the user model, i.e. our assumptions
about the user. We do think this is acceptable. It is common practice to train
the user on how to operate a system. For this, a formal user model allows to
explicit state what a user has to know in order to operate the system.

6 Specification of Secure Interactive Applications

In Section 5 we showed that the näıve model of user and application inter-
action is not sufficient to guarantee consistency. While we showed that the
refined model guarantees consistency for the given application logic and user
logic components, we did not—and can not—show that the consistency con-
straint holds for all application and user logic components, because it does
not solely rely on consistency between the user and the application model;
the user must also have the right assumptions about the application model.
He must have knowledge about the inner working of the application, and
about the consequences of his actions. This knowledge is represented in the
user logic module. Just like the user’s and application’s execution loops, the
logic components of user and application are modeled as IOLTS. This requires
a state-based representation of the application, and of the user’s knowledge
about the application.

In the last Section, basic application logic and user logic modules were
used in the refutation of the näıve model. These example modules (given in
Figure 5), had only two outputs: showA and showB. In actual applications,
possible system configurations and outputs are much richer in detail. Even
if considering TTY-based applications, we have screens with multiple rows
and columns, where each cell can contain an alphanumeric character. Even
on a moderately sized screen, the set of all possible combinations of output
characters are too large to be modeled explicitly. Therefore, it is necessary to
find a suitable abstraction of application states, application output and user
assumptions about application states in order to make real-world applications
suitable for automated model checking for consistency constraints. Of course,
such security-relevant states are abstractions of the application’s actual in-
ternal configuration, which is much richer in detail. Nevertheless, we assume
that these states are the right abstraction in that the user has sufficient infor-
mation about the internal configuration of the application if he or she knows
the abstract state of the application.

In the following, our abstract model of an application assumes that an
application can be in one of many states, and that the current state is rep-
resented in variable applicConf. User commands (usually corresponding to
keystrokes entered by the user) trigger state transitions. Depending on the
result of a command, the system transits into a new state. The actual spec-
ifications of command execution is application dependent. Pseudo code for

12

Beckert, Beuster

1: repeat

2: {Show Result}
3: updateScreen(confAsString(applicConf),applicConf)

4: {Get Command}
5: repeat

6: cmd := getKeystroke()

7: if cmd = ESC then

8: {Escaped}
9: updateScreen(confAsString(applicConf) +

‘‘Waiting’’,applicConf)

10: end if

11: until cmd 6= ESC
12: {Busy}
13: updateScreen(confAsString(applicConf) +

‘‘Processing’’,applicConf)

14: {Execute & Get Result}
15: applicConf := execute(cmd,applicConf)
16: until cmd = QUIT

Algorithm 1. The main event loop

a main event loop implementing the Application Execution Cycle model from
Figure 7 is given in Algorithm 1.

For the specification of the screen update function updateScreen, we use
the following auxiliary functions:

• confAsString(applicConf) is a string that allows the user to identify the
state of the application.

• screenOutput(applicConf) is a two-dimensional array of characters. It con-
tains the correct screen output corresponding to applicConf. The actual
definition of screenOutput is under the discretion of the application at
hand.

• stringAt(x, y) is the string shown on screen position (x, y).

We require that the current state of the application logic component plus
optionally the additional information “waiting” or “processing” are shown in
the first line of the screen. A specification for function updateScreen in OCL 4

is shown in Table 1.

It should be noted that we do not restrict ourselves to a certain application.
The specification fits every applications requiring a secure, text-based user
interface.

4 The OCL specification should be understandable without deeper knowledge of OCL. See
[25,26] for more information on OCL and [17] for the current language specification.

13

Beckert, Beuster

context updateScreen(status,conf)

post stringAt(0, 0) = status and

∀k ∈ {1, . . . , screenHeight − 1} :

stringAt(0, k) =

screenOutput(applicConf)[k − 1]

Table 1
Specification of the application’s function for updating the screen contents

7 Verification

In order to verify that an implementation satisfies the consistency constraints,
a number of assumptions about the user are necessary:

(i) The user observes the screen.

(ii) The user understands the output of stateAsString .

Under these assumptions, it is sufficient to show that the status string as pro-
vided by stateAsString is adequate, and that updateScreen is called as specified
in the last Section. With these assumptions and the additional assumption
that the operating system works correctly, verification of observability can be
split into two parts:

(i) Proofs for the application’s functions execute and updateScreen.

(ii) Proofs about the main event loop in respect to the application model.

The second part is generic, since the main event loop given in Algorithm 1 is
applicable to all applications following our design methodology.

It should be noted that two calculi are integrated in our approach. The
properties of the main execution loop need to be proven in some temporal
calculus. Satisfaction of the requirements for the main execution loop can be
proven by model checking. Proofs about the application’s functionality can
be executed in a calculus based on pre- and postconditions, e.g. Hoare logic.
From the proofs about the application’s functionality it follows that for each
distinct system configuration, updateScreen produces a distinct and up-to-
date screen representation. From the assumption that the user understands
the chosen representation, it follows that observability is given immediately
after every call of updateScreen.

In project Verisoft (http://www.verisoft.de), this approach is used to
prove observability of an email client application in the context of a pervasively
verified computer system.

14

http://www.verisoft.de

Beckert, Beuster

8 Conclusions and Future Work

In this paper, we showed how formal methods can be used to guaranteed a
fundamental requirement of user interface security.

In Section 4, we translated the generic security requirements of Confiden-
tiality, Integrity, and Availability to human-computer interaction, and we gave
a formal definition of Integrity for HCI: The user should always be aware of
the current state of the system. In Chapter 5, we developed generic models
for TTY-based application. We showed that a näıve approach leads to models
that do not guarantee consistency. We provided a refined model that satis-
fies consistency constraints. In Section 6, we showed how the formal model
can be transfered to actual applications, and what has to be shown about an
application in order to ensure its security.

In project Verisoft (http://www.verisoft.de) our method is used to spec-
ify, implement and verify a secure email client. In Verisoft, both the operating
system and the application program are formally verified based on that spec-
ification.

In the future, we plan to extend our work to other aspects of user interface
security. Our goal is to create a systematic formal description of user interface
security for interactive systems.

References

[1] G. D. Abowd, J. P. Bowen, A. J. Dix, M. D. Harrison, and R. Took. User
interface languages: A survey of existing methods. Technical Report PRG-TR-
5-89, Oxford University Computing Laboratory, October 1989.

[2] Jean Berstel, Stefano Crespi Reghizzi, Gilles Roussel, and Pierluigi San
Pietro. A scalable formal method for design and automatic checking of
user interfaces. ACM Transactions on Software Engineering and Methodology
(TOSEM), 14(2):124–167, April 2005.

[3] Simon P. Booth and Simon B. Jones. A screen editor written in the miranda
functional programming language. Technical Report TR-116, Department of
Computing Science and Mathematics, University of Stirling, February 1994.

[4] David A. Carr. Interaction object graphs: an executable graphical notation for
specifying user interfaces. In Philippe Palanque and Fabio Paternò, editors,
Formal methods in Human-Computer Interaction, pages 141–155. Springer,
1997.

[5] Geert de Haan. ETAG, A Formal Model of Competence Knowledge for User-
Interface Design. PhD thesis, Vrije Universiteit, Amsterdam, 2000.

[6] Asaf Degani, Michael Heymann, George Meyer, and Michael Shafto. Some
formal aspects of human-automation interaction. Technical report, NASA,
Moffett Field, CA: NASA Ames Research Center, 2000.

15

http://www.verisoft.de

Beckert, Beuster

[7] Rüdiger Dierstein. Sicherheit in der Informationstechnik — der Begriff IT-
Sicherheit. Informatik Spektrum, 27(4), August 2004.

[8] A. Dix and G. Abowd. Modelling status and event behaviour of interactive
systems. Software Engineering Journal, 11(6):334–346, 1996.

[9] A. J. Dix and C. Runciman. Abstract models of interactive systems. In
P. Johnson and S. Cook, editors, HCI’85: People and Computers I: Designing
the Interface, pages 13–22. Cambridge: Cambridge University Press, 1985.

[10] Doug Goldson. Formal modelling of interactive systems. In Proceedings of
APAQS 2OOO, the First Asia-Pacific Conference on Quality Software, IEEE
Conference Proceedings. IEEE Computer Society Press, 2000.

[11] Jonathan Grudin. The case against user interface consistency. Communications
of the ACM, 32(Issue 10):1164–1173, October 1989.

[12] F. Hamilton. Predictive evaluation using task knowledge structures, 1996.

[13] Michael Harrison and Harold Thimbleby, editors. Formal methods in human-
computer interaction. Cambridge Univ. Press, Cambridge, Mass., 1990.

[14] A. Hussey and D. Carrington. Specifying a web browser interface using
Object Z. In Philippe Palanque, editor, Formal methods in human computer
interaction, chapter 8. Springer, 1998.

[15] Vipul Jain. User interface description formalisms. Technical report, McGill
University School of Computer Science, Montréal, Canada, 1994.

[16] Bonnie E. John and David E. Kieras. The GOMS family of user interface
analysis techniques: Comparison and contrast. ACM Transactions on
Computer-Human Interaction, 3(Issue 4):320–351, December 1996.

[17] Object Modeling Group. Unified Modelling Language Specification, version 1.5,
March 2003.

[18] Philippe Palanque, Remi Bastide, and Valerie Senges. Validating interactive
system design through the verification of formal task and system models. In
Engineering for Human-Computer Interaction. Chapman & Hall, August 1995.

[19] Philippe Palanque and Fabio Paternò, editors. Formal methods in human
computer interaction. Springer, New York, London, 1998.

[20] Fabio Paternò. Model-Based Design and Evaluation of Interactive Applications.
Springer, 1999.

[21] Robert W. Reeder and Roy A. Maxion. User interface dependability through
goal-error prevention. In DSN ’05: Proceedings of the 2005 International
Conference on Dependable Systems and Networks (DSN’05), pages 60–69,
Washington, DC, USA, 2005. IEEE Computer Society.

[22] John Rushby. Using model checking to help discover mode confusions and other
automation surprises. Reliability Engineering and System Safety, 75(2):167–
177, February 2002.

16

Beckert, Beuster

[23] Bettina Sucrow. Formal specification of human-computer interaction by graph
grammars under consideration of information resources. In Automated Software
Engineering, pages 28–35, 1997.

[24] B. Sufrin. Formal specification of a display editor. Science of Computer
Programming, pages 157–202, 1982.

[25] Jos Warmer and Anneke Kleppe. OCL: The constraint language of the UML.
Journal of Object-Oriented Programming, 12(1):10–13,28, March 1999.

[26] Jos B. Warmer and Anneke G. Kleppe. The Object Constraint Language:
Precise Modeling With UML. Addison-Wesley Professional, 1998.

[27] Peter Wright, Bob Fields, and Michael Harrison. Deriving human-error
tolerance requirements from task analysis. In IEEE International Conference
on Requirements Engineering, 1994.

17

	Introduction
	Related Work
	Notation
	Formal Definition of User Interface Integrity
	Guaranteeing Integrity
	Specification of Secure Interactive Applications
	Verification
	Conclusions and Future Work
	References

