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Motivation

Bringing together formal methods, HCI, and security,
because. . .

• user interfaces of security-critical systems become more
complex.

• for some systems, security lies in the user interface.
• an increasing number of real-world attacks is targeted at

the user interface.
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Steps

1. Formalize user interface
(User Interface ⇐⇒ Formal methods)

2. Define requirement for a secure user interface
(Security ⇐⇒ HCI)

3. Formalize UI security requirements
(Formal methods ⇐⇒ Security)

4. =⇒ Formal model of secure user interfaces

5. (User model?)
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Expected Functionality

Generic, modern user interface
• Keyboard/mouse input
• Text or bitmap output

• Multiple screen areas/windows
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Formalize User Interface

There are many methods to treat user interfaces formally. . .

. . . for our purposes, process algebras seem to be a good
choice.

• formal description of interfaces
• can handle concurrency

• support different levels of abstraction
• agnostic to internal properties of components/data
• tool support
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Generic model of multi-window applications
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Generic model of multi-window applications

OutputRendererLayoutManagerInputDispatcher

Window 2

Window 1

Window 0

Window Layout
WindowActive

UserInput Bitmap

WindowManager

BitmapGUICommandsUserInput

InputDispatcher
in i : UserInput
in j : ActiveWindow
out o[N] : UserInput

∀ k ∈ N : f [〈〉](i, j, k) = o[k ]
where f so that
f [m](as, 〈b〉_bs, l) = f [b](as, bs, l)
f [m](〈a〉_as, bs, l) = f [m](as, bs, l) if l 6= m
f [m](〈a〉_as, bs, l) = 〈a〉_f [m](as, bs, l) if l = m
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Generic model of multi-window applications

OutputRendererLayoutManagerInputDispatcher
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GuiCommands =

〈. . .

raise id2,

resize id0 81 38,

move id1 3 17

. . .〉
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Generic model of multi-window applications
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Generic model of multi-window applications

OutputRendererLayoutManagerInputDispatcher

Window 2

Window 1
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UserInput Bitmap

WindowManager

BitmapGUICommandsUserInput

LayoutManager
in i : guiCommand
out p : WindowLayout
out q : ActiveWindow

m[〈〉](i) = t with p = map(Π0, t); q = map(Π1, t)
where m so that :
m[s](〈raise d〉_i) = (raise(s, d), 〈d〉)_m[raise(s, d)](i)
m[s](〈move (d,x,y)〉_i) = (move(s, d , x , y), 〈〉)_m[move(s, d , x , y)](i)
m[s](〈resize (d,w,h)〉_i) = (resize(s, d , w , h), 〈〉)_m[resize(s, d , w , h)](i)
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Generic model of multi-window applications
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Generic model of multi-window applications
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Secure User Interface Requirements

Defined by
• Expected Functionality
• System Environment / Attack Scenarios

• Required Security Level
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Secure User Interface Requirements

Defined by
• Expected Functionality
• System Environment / Attack Scenarios

• Required Security Level

Required Security Level
• Provable secure against attacks

• Compatible to standard security catalogs

• = Allows certification beyond highest standards (EAL7+)
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Secure User Interface Requirements

Defined by
• Expected Functionality
• System Environment / Attack Scenarios

• Required Security Level

Attack Scenarios
• Standardized catalogs

• Application specific attacks
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Secure User Interface Requirements

Defined by
• Expected Functionality
• System Environment / Attack Scenarios

• Required Security Level

System Environment
• Physical secure system

• Multi-user, multi-tasking computer systems

• Part of I/O data may come from third parties
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Expected Functionality

Generic requirements
• No eavesdropping on I/O devices
• Allow to place constraints on I/O behavior

◦ Input possible only before/after certain events
◦ Restrict access to screen areas/windows
◦ Enforce properties of output data (font, size, color, no

mimikry, stays on top. . . )

Formalizing Security Properties of User Interfaces – p. 13/19



Steps

1. Formalize user interface
(User Interface ⇐⇒ Formal methods)

2. Define requirement for a secure user interface
(Security ⇐⇒ HCI)

3. Formalize UI security requirements
(Formal methods ⇐⇒ Security)

4. =⇒ Formal model of secure user interfaces

5. (User model?)

Formalizing Security Properties of User Interfaces – p. 14/19



Steps

1. Formalize user interface
(User Interface ⇐⇒ Formal methods)

2. Define requirement for a secure user interface
(Security ⇐⇒ HCI)

3. Formalize UI security requirements
(Formal methods ⇐⇒ Security)

4. =⇒ Formal model of secure user interfaces

5. (User model?)

Formalizing Security Properties of User Interfaces – p. 14/19



Expected Functionality

Constraining I/O behavior
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Example: Stays on Top
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Example: Stays on Top

OutputRenderer

Window

LayoutManager

GUICommands

Layout
Window

Bitmap

Bitmap

WindowLayout =

〈. . . ,

〈(id1, x1, y1, w1, h1),

(id2, x2, y2, w2, h2),

(id0, x0, y0, w0, h0)〉,

. . .〉

LayoutManager′

in i : guiCommand
out p′ : WindowLayout
out q : ActiveWindow

LayoutManager(i, p, q) ∧ (Π0.ft.p′ = id1)
∧ (rt.p′ = map(p, (λ e.if e = id1 then 〈〉else e)))
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Example: Stays on Top

OutputRenderer
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〈(id1, x1, y1, w1, h1),

(id2, x2, y2, w2, h2),

(id0, x0, y0, w0, h0)〉,

. . .〉

LayoutManager′

in i : guiCommand
out p′ : WindowLayout
out q : ActiveWindow

LayoutManager(i, p, q) ∧ (ft.p′ = (id1, 0, 0, 800, 200)
∧ (rt.p′ = map(p, (λ e.if e = id1 then 〈〉else e)))
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Example: Stays on Top

OutputRenderer

Window

LayoutManager

GUICommands

Layout
Window
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Bitmap

WindowLayout =
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〈(id1, x1, y1, w1, h1),

(id2, x2, y2, w2, h2),

(id0, x0, y0, w0, h0)〉,

. . .〉

LayoutManager′

in i : guiCommand
out p′ : WindowLayout
out q : ActiveWindow

∀ x , y ∈ p′ : overlap(x , y) → x = y
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Example: Stays on Top

OutputRenderer

Window

LayoutManager
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Layout
Window
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OutputRenderer′

in i : Bitmap
out o : Bitmap

∀ x , y , x ′, y ′ ∈ o : adjacent((x , y), (x ′, y ′)) →
(contrast(o(x , y), o(x ′, y ′)) = 0)
∨ (contrast(o(x , y), o(x ′, y ′)) > minContrast)
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Applying it to the real world. . .

Verisoft Email Client

Formalizing parts of the Common Criteria

Simple window manager for capability-based systems
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