
Formalizing Security Properties
of User Interfaces

Gerd Beuster

gb@uni-koblenz.de

Universität Koblenz-Landau



Formal Methods, HCI, Security

HCI Security

Formal Methods

Formalizing Security Properties of User Interfaces – p. 2/19



Formal Methods, HCI, Security

HCI Security

Formal Methods

Formalizing Security Properties of User Interfaces – p. 2/19



Motivation

Bringing together formal methods, HCI, and security,
because. . .

• user interfaces of security-critical systems become more
complex.

• for some systems, security lies in the user interface.
• an increasing number of real-world attacks is targeted at

the user interface.

Formalizing Security Properties of User Interfaces – p. 3/19



Steps

1. Formalize user interface
(User Interface ⇐⇒ Formal methods)

2. Define requirement for a secure user interface
(Security ⇐⇒ HCI)

3. Formalize UI security requirements
(Formal methods ⇐⇒ Security)

4. =⇒ Formal model of secure user interfaces

5. (User model?)

Formalizing Security Properties of User Interfaces – p. 4/19



Steps

1. Formalize user interface
(User Interface ⇐⇒ Formal methods)

2. Define requirement for a secure user interface
(Security ⇐⇒ HCI)

3. Formalize UI security requirements
(Formal methods ⇐⇒ Security)

4. =⇒ Formal model of secure user interfaces

5. (User model?)

Formalizing Security Properties of User Interfaces – p. 4/19



Expected Functionality

Generic, modern user interface
• Keyboard/mouse input
• Text or bitmap output

• Multiple screen areas/windows

Formalizing Security Properties of User Interfaces – p. 5/19



Formalize User Interface

There are many methods to treat user interfaces formally. . .

. . . for our purposes, process algebras seem to be a good
choice.

• formal description of interfaces
• can handle concurrency

• support different levels of abstraction
• agnostic to internal properties of components/data
• tool support

Formalizing Security Properties of User Interfaces – p. 6/19



Generic model of multi-window applications

OutputRendererLayoutManagerInputDispatcher

Window 2

Window 1

Window 0

Window Layout
WindowActive

UserInput Bitmap

WindowManager

BitmapGUICommandsUserInput

Formalizing Security Properties of User Interfaces – p. 7/19



Generic model of multi-window applications

OutputRendererLayoutManagerInputDispatcher

Window 2

Window 1

Window 0

Window Layout
WindowActive

UserInput Bitmap

WindowManager

BitmapGUICommandsUserInput

UserInput:

〈. . . , h, e, l, l, o, . . .〉

Formalizing Security Properties of User Interfaces – p. 7/19



Generic model of multi-window applications

OutputRendererLayoutManagerInputDispatcher

Window 2

Window 1

Window 0

Window Layout
WindowActive

UserInput Bitmap

WindowManager

BitmapGUICommandsUserInput

InputDispatcher
in i : UserInput
in j : ActiveWindow
out o[N] : UserInput

∀ k ∈ N : f [〈〉](i, j, k) = o[k ]
where f so that
f [m](as, 〈b〉_bs, l) = f [b](as, bs, l)
f [m](〈a〉_as, bs, l) = f [m](as, bs, l) if l 6= m
f [m](〈a〉_as, bs, l) = 〈a〉_f [m](as, bs, l) if l = m

Formalizing Security Properties of User Interfaces – p. 7/19



Generic model of multi-window applications

OutputRendererLayoutManagerInputDispatcher

Window 2

Window 1

Window 0

Window Layout
WindowActive

UserInput Bitmap

WindowManager

BitmapGUICommandsUserInput

Formalizing Security Properties of User Interfaces – p. 7/19



Generic model of multi-window applications

OutputRendererLayoutManagerInputDispatcher

Window 2

Window 1

Window 0

Window Layout
WindowActive

UserInput Bitmap

WindowManager

BitmapGUICommandsUserInput

GuiCommands =

〈. . .

raise id2,

resize id0 81 38,

move id1 3 17

. . .〉

Formalizing Security Properties of User Interfaces – p. 7/19



Generic model of multi-window applications

OutputRendererLayoutManagerInputDispatcher

Window 2

Window 1

Window 0

Window Layout
WindowActive

UserInput Bitmap

WindowManager

BitmapGUICommandsUserInput

WindowLayout =

〈. . . ,

〈(id1, x1, y1, w1, h1),

(id2, x2, y2, w2, h2),

(id0, x0, y0, w0, h0)〉,

. . .〉

Formalizing Security Properties of User Interfaces – p. 7/19



Generic model of multi-window applications

OutputRendererLayoutManagerInputDispatcher

Window 2

Window 1

Window 0

Window Layout
WindowActive

UserInput Bitmap

WindowManager

BitmapGUICommandsUserInput

LayoutManager
in i : guiCommand
out p : WindowLayout
out q : ActiveWindow

m[〈〉](i) = t with p = map(Π0, t); q = map(Π1, t)
where m so that :
m[s](〈raise d〉_i) = (raise(s, d), 〈d〉)_m[raise(s, d)](i)
m[s](〈move (d,x,y)〉_i) = (move(s, d , x , y), 〈〉)_m[move(s, d , x , y)](i)
m[s](〈resize (d,w,h)〉_i) = (resize(s, d , w , h), 〈〉)_m[resize(s, d , w , h)](i)

Formalizing Security Properties of User Interfaces – p. 7/19



Generic model of multi-window applications

OutputRendererLayoutManagerInputDispatcher

Window 2

Window 1

Window 0

Window Layout
WindowActive

UserInput Bitmap

WindowManager

BitmapGUICommandsUserInput

Formalizing Security Properties of User Interfaces – p. 7/19



Generic model of multi-window applications

OutputRendererLayoutManagerInputDispatcher

Window 2

Window 1

Window 0

Window Layout
WindowActive

UserInput Bitmap

WindowManager

BitmapGUICommandsUserInput

Formalizing Security Properties of User Interfaces – p. 7/19



Generic model of multi-window applications

OutputRendererLayoutManagerInputDispatcher

Window 2

Window 1

Window 0

Window Layout
WindowActive

UserInput Bitmap

WindowManager

BitmapGUICommandsUserInput

WindowLayout =

〈. . . ,

〈(id1, x1, y1, w1, h1),

(id2, x2, y2, w2, h2),

(id0, x0, y0, w0, h0)〉,

. . .〉

Formalizing Security Properties of User Interfaces – p. 7/19



Generic model of multi-window applications

OutputRendererLayoutManagerInputDispatcher

Window 2

Window 1

Window 0

Window Layout
WindowActive

UserInput Bitmap

WindowManager

BitmapGUICommandsUserInput

Formalizing Security Properties of User Interfaces – p. 7/19



Generic model of multi-window applications

OutputRendererLayoutManagerInputDispatcher

Window 2

Window 1

Window 0

Window Layout
WindowActive

UserInput Bitmap

WindowManager

BitmapGUICommandsUserInput

Formalizing Security Properties of User Interfaces – p. 8/19



Generic model of multi-window applications

OutputRendererLayoutManagerInputDispatcher

Window

Window Layout
WindowActive

UserInput Bitmap

WindowManager

UserInput BitmapGUICommands

Formalizing Security Properties of User Interfaces – p. 8/19



Generic model of multi-window applications

OutputRenderer

Widget

InputDispatcher LayoutManager

InputDispatcher LayoutManager OutputRenderer

Window Layout
WindowActive

UserInput Bitmap

WindowManager

Bitmap

Active

UserInput

Window

GUICommandsUserInput Bitmap

GUICommands

Window
Window
Layout

Formalizing Security Properties of User Interfaces – p. 8/19



Generic model of multi-window applications

Formalizing Security Properties of User Interfaces – p. 9/19



Generic model of multi-window applications

OutputRenderer

Widget

InputDispatcher LayoutManager

InputDispatcher LayoutManager OutputRenderer

Window Layout
WindowActive

UserInput Bitmap

WindowManager

Bitmap

Active

UserInput

Window

GUICommandsUserInput Bitmap

GUICommands

Window
Window
Layout

Formalizing Security Properties of User Interfaces – p. 10/19



Steps

1. Formalize user interface
(User Interface ⇐⇒ Formal methods)

2. Define requirement for a secure user interface
(Security ⇐⇒ HCI)

3. Formalize UI security requirements
(Formal methods ⇐⇒ Security)

4. =⇒ Formal model of secure user interfaces

5. (User model?)

Formalizing Security Properties of User Interfaces – p. 11/19



Steps

1. Formalize user interface
(User Interface ⇐⇒ Formal methods)

2. Define requirement for a secure user interface
(Security ⇐⇒ HCI)

3. Formalize UI security requirements
(Formal methods ⇐⇒ Security)

4. =⇒ Formal model of secure user interfaces

5. (User model?)

Formalizing Security Properties of User Interfaces – p. 11/19



Secure User Interface Requirements

Defined by
• Expected Functionality
• System Environment / Attack Scenarios

• Required Security Level

Formalizing Security Properties of User Interfaces – p. 12/19



Secure User Interface Requirements

Defined by
• Expected Functionality
• System Environment / Attack Scenarios

• Required Security Level

Required Security Level
• Provable secure against attacks

• Compatible to standard security catalogs

• = Allows certification beyond highest standards (EAL7+)

Formalizing Security Properties of User Interfaces – p. 12/19



Secure User Interface Requirements

Defined by
• Expected Functionality
• System Environment / Attack Scenarios

• Required Security Level

Attack Scenarios
• Standardized catalogs

• Application specific attacks

Formalizing Security Properties of User Interfaces – p. 12/19



Secure User Interface Requirements

Defined by
• Expected Functionality
• System Environment / Attack Scenarios

• Required Security Level

System Environment
• Physical secure system

• Multi-user, multi-tasking computer systems

• Part of I/O data may come from third parties

Formalizing Security Properties of User Interfaces – p. 12/19



Expected Functionality

Generic requirements
• No eavesdropping on I/O devices
• Allow to place constraints on I/O behavior

◦ Input possible only before/after certain events
◦ Restrict access to screen areas/windows
◦ Enforce properties of output data (font, size, color, no

mimikry, stays on top. . . )

Formalizing Security Properties of User Interfaces – p. 13/19



Steps

1. Formalize user interface
(User Interface ⇐⇒ Formal methods)

2. Define requirement for a secure user interface
(Security ⇐⇒ HCI)

3. Formalize UI security requirements
(Formal methods ⇐⇒ Security)

4. =⇒ Formal model of secure user interfaces

5. (User model?)

Formalizing Security Properties of User Interfaces – p. 14/19



Steps

1. Formalize user interface
(User Interface ⇐⇒ Formal methods)

2. Define requirement for a secure user interface
(Security ⇐⇒ HCI)

3. Formalize UI security requirements
(Formal methods ⇐⇒ Security)

4. =⇒ Formal model of secure user interfaces

5. (User model?)

Formalizing Security Properties of User Interfaces – p. 14/19



Expected Functionality

Constraining I/O behavior
• Input possible only before/after certain events
• Restrict access to screen areas/windows

• Enforce properties of output data (font, size, color, no
mimikry, stays on top . . . )

Formalizing Security Properties of User Interfaces – p. 15/19



Expected Functionality

Constraining I/O behavior
• Input possible only before/after certain events
• Restrict access to screen areas/windows

• Enforce properties of output data (font, size, color, no
mimikry, stays on top . . . )

Formalizing Security Properties of User Interfaces – p. 15/19



Example: Stays on Top

OutputRenderer

Window

LayoutManager

GUICommands

Layout
Window

Bitmap

Bitmap

Formalizing Security Properties of User Interfaces – p. 16/19



Example: Stays on Top

OutputRenderer

Window

LayoutManager

GUICommands

Layout
Window

Bitmap

Bitmap

WindowLayout =

〈. . . ,

〈(id1, x1, y1, w1, h1),

(id2, x2, y2, w2, h2),

(id0, x0, y0, w0, h0)〉,

. . .〉

Formalizing Security Properties of User Interfaces – p. 16/19



Example: Stays on Top

OutputRenderer

Window

LayoutManager

GUICommands

Layout
Window

Bitmap

Bitmap

WindowLayout =

〈. . . ,

〈(id1, x1, y1, w1, h1),

(id2, x2, y2, w2, h2),

(id0, x0, y0, w0, h0)〉,

. . .〉

LayoutManager′

in i : guiCommand
out p′ : WindowLayout
out q : ActiveWindow

LayoutManager(i, p, q) ∧ (Π0.ft.p′ = id1)
∧ (rt.p′ = map(p, (λ e.if e = id1 then 〈〉else e)))

Formalizing Security Properties of User Interfaces – p. 16/19



Example: Stays on Top

OutputRenderer

Window

LayoutManager

GUICommands

Layout
Window

Bitmap

Bitmap

WindowLayout =

〈. . . ,

〈(id1, x1, y1, w1, h1),

(id2, x2, y2, w2, h2),

(id0, x0, y0, w0, h0)〉,

. . .〉

LayoutManager′

in i : guiCommand
out p′ : WindowLayout
out q : ActiveWindow

LayoutManager(i, p, q) ∧ (ft.p′ = (id1, 0, 0, 800, 200)
∧ (rt.p′ = map(p, (λ e.if e = id1 then 〈〉else e)))

Formalizing Security Properties of User Interfaces – p. 16/19



Example: Stays on Top

OutputRenderer

Window

LayoutManager

GUICommands

Layout
Window

Bitmap

Bitmap

WindowLayout =

〈. . . ,

〈(id1, x1, y1, w1, h1),

(id2, x2, y2, w2, h2),

(id0, x0, y0, w0, h0)〉,

. . .〉

LayoutManager′

in i : guiCommand
out p′ : WindowLayout
out q : ActiveWindow

∀ x , y ∈ p′ : overlap(x , y) → x = y

Formalizing Security Properties of User Interfaces – p. 16/19



Example: Stays on Top

OutputRenderer

Window

LayoutManager

GUICommands

Layout
Window

Bitmap

Bitmap

WindowLayout =

〈. . . ,

〈(id1, x1, y1, w1, h1),

(id2, x2, y2, w2, h2),

(id0, x0, y0, w0, h0)〉,

. . .〉

OutputRenderer′

in i : Bitmap
out o : Bitmap

∀ x , y , x ′, y ′ ∈ o : adjacent((x , y), (x ′, y ′)) →
(contrast(o(x , y), o(x ′, y ′)) = 0)
∨ (contrast(o(x , y), o(x ′, y ′)) > minContrast)

Formalizing Security Properties of User Interfaces – p. 16/19



Steps

1. Formalize user interface
(User Interface ⇐⇒ Formal methods)

2. Define requirement for a secure user interface
(Security ⇐⇒ HCI)

3. Formalize UI security requirements
(Formal methods ⇐⇒ Security)

4. =⇒ Formal model of secure user interfaces

5. (User model?)

Formalizing Security Properties of User Interfaces – p. 17/19



Steps

1. Formalize user interface
(User Interface ⇐⇒ Formal methods)

2. Define requirement for a secure user interface
(Security ⇐⇒ HCI)

3. Formalize UI security requirements
(Formal methods ⇐⇒ Security)

4. =⇒ Formal model of secure user interfaces

5. (User model?)

Formalizing Security Properties of User Interfaces – p. 17/19



Applying it to the real world. . .

Verisoft Email Client

Formalizing parts of the Common Criteria

Simple window manager for capability-based systems

Formalizing Security Properties of User Interfaces – p. 18/19



Steps

1. Formalize user interface
(User Interface ⇐⇒ Formal methods)

2. Define requirement for a secure user interface
(Security ⇐⇒ HCI)

3. Formalize UI security requirements
(Formal methods ⇐⇒ Security)

4. =⇒ Formal model of secure user interfaces

5. (User model?)

Formalizing Security Properties of User Interfaces – p. 19/19



Steps

1. Formalize user interface
(User Interface ⇐⇒ Formal methods)

2. Define requirement for a secure user interface
(Security ⇐⇒ HCI)

3. Formalize UI security requirements
(Formal methods ⇐⇒ Security)

4. =⇒ Formal model of secure user interfaces

5. (User model?)

Formalizing Security Properties of User Interfaces – p. 19/19


	Formal Methods, HCI, Security
	Motivation
	Steps
	Expected Functionality
	Formalize User Interface
	Generic model of multi-window applications
	Generic model of multi-window applications
	Generic model of multi-window applications
	Generic model of multi-window applications
	Steps
	Secure User Interface Requirements
	Expected Functionality
	Steps
	Expected Functionality
	Example: Stays on Top
	Steps
	Applying it to the real worlddots 
	Steps

