
Towards building computational agent schemes

Gerd Beuster, Pavel Krušina, Roman Neruda1, Pavel Rydvan2

1Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod vodárenskou v̌ež́ı 2, 18207 Prague 8,
Czech Republic, email: bang@cs.cas.cz.2Faculty of Mathematics and Physics, Charles University, Malostranské

náměst́ı 25, 11000 Prague 1, Czech Republic

Abstract

A general concept of representation of connected groups of
agents (schemes) within a multi-agent system is introduced and
utilized for automatic building of schemes to solve a given
computational task. We propose a combination of an evolu-
tionary algorithm and a formal logic resolution system which
is able to propose and verify new schemes. The approach is
illustrated on simple examples.

1 Introduction
Hybrid models, including combinations of artificial

intelligence methods such as neural networks, genetic
algorithms and fuzzy logic controllers, seem to be a
promising and extensively studied research area [1]. We
have designed a distributed multi-agent system [6] called
Bang 3 that provides a support for an easy creation of
hybrid AI models by means of autonomous software
agents [3].

Besides serving as an experimental tool and a dis-
tributed computational environment [4], this system
should also allow to create new agent classes consisting
of several cooperating agents. Theschemeis a concept
for describing the relations within such a set of agents.
The basic motivation for schemes is to describe various
computational methods. It should be easy to ‘connect’
a particular computational method (implemented as an
agent) into hybrid methods, using schemes description.
The scheme description should be strong enough to de-
scribe all the necessary relations within a set of agents
that need to communicate one with another in a general
manner.

Example: The genetic algorithm itself, from this
point of view, consists of several parts: theGenetics
agent, which performs the basic genetic algorithm logic
and glues all parts together, theFitnessagent, that eval-
uates the fitness function for each individual, theOp-
erators agent, that provides genetic operators, metrics
operators, and creation operators, theSelectionagent,
that provides the selection of individuals. There are also
two optional agent types that can further optimize overall
performance: theShaperagent, that provides global pro-
cessing of population individuals fitness function values

— such as sigma scaling — and theTuneragent, that by
exploiting information about the genetic algorithm per-
formance (like best individual fitness, average fitness,
first and second derivatives of these etc) tunes genetic
operators probabilities (cf. Fig 1). It is supposed that
there will exist more rival agents implementing a partic-
ular function (such as fitness evaluating) and it will be
possible to choose among them.

Genetics

Fitness Operators

TunerSelection

Shaper

Chromosom independent

Chromosom dependent

Required blocks

Optional blocks

Fig. 1. Genetic algorithm as a multi-agent system.

This paper focuses on ways how to search the space
of schemes representing a multi-agent system. The sys-
tem consists of agents encapsulating individual compu-
tational methods, or their combinations. The behavior
of the system is tested in the course of searching pro-
cess by means of a given training dataset. In the case
that the space is finite or ‘small’, variations of searching
algorithms can be used (see e.g. [5]). We focused on
employing an evolutionary algorithm together with the
logics resolution system.

In the following section we present details on the
scheme and evolutionary algorithm design. Next section
treats a work on schemes as a logic constraint satisfac-
tion problem. This approach can be used in two ways:
either to generate new feasible solutions, or to verify so-
lutions proposed by an evolutionary algorithm for their
feasibility before they undergo the evolution. Such a
hybrid approach neatly augments the evolutionary algo-
rithm so it operates only on solutions that ‘make sense’.
Simple experiments and future work ideas conclude the
paper.



2 Schemes

The scheme is a set of agents with a given topology of
communication channels. The following mechanism for
scheme specification has been designed.

The agents that comprise the scheme are calledbuild-
ing blocks. Building blocks communicate throughin-
comingand outgoing gates. Each agent can have any
number of both incoming and outgoing gates.

One purpose of the schemes is that the hybrid com-
putational methods designed in a form of scheme can be
easily stored and used. Second, perhaps more interest-
ing, challenge of the schemes concept is theautomatic
scheme generation. The scheme definition is a data
structure consisting of the list of the building blocks and
the interconnection among them. Actually, the scheme
definition is a directed acyclic graph. This offers the pos-
sibility of automatic searching the space of schemes in
order to find a suitable solution.

The proposed evolutionary algorithm operates on
schemes definitions in order to find a suitable scheme
solving a specified problem. The genetic algorithm has
three inputs: First, the number and the types of inputs
and outputs of the scheme. Second, thetraining set,
which is a set of prototypical inputs and the correspond-
ing desired outputs, it is used to compute the fitness of a
particular solution. And third, the list of types of build-
ing blocks available for being used in the scheme.

We supply three operators that would operate on
graphs representing schemes:random scheme creation,
mutationandcrossover.

The aim of the first one is to create a random scheme.
This operator is used when creating the first (random)
generation. The diversity of the schemes that are gener-
ated is the most important feature the generated schemes
should have. The ‘quality’ of the scheme (that means
whether the scheme computes the desired function or
not) is insignificant at that moment, it is a task of other
parts of the genetic algorithm to assure this. The algo-
rithm for random scheme creation works incrementally.
In each step one building block is added to the scheme
being created. In the beginning, the most emphasis is
put on the randomness. Later the building blocks are
selected more in fashion so it would create the scheme
with the desired number and types of gates (so the pro-
cess converges to the desired type of function).

The goal of the crossover operator is to create off-
springs from two parents. The crossover operator pro-
posed for scheme generation creates one offspring. The
operator horizontally divides the mother and the father,
takes the first part from father’s scheme, and the second
from mother’s one. The crossover is illustrated in Fig. 2.

The mutation operator is very simple. It finds two
links in the scheme (of the same type) and switches

BlockPlus (0)

BlockCopy (2)

BlockConstNeg1 (1)

BlockFloatize (4)

BlockRound (5)

Schema Input

BlockMul (6)

BlockCopy (5) BlockFloatize (4)

BlockMul (7)

BlockPlus (8)

Scheme Output

5

BlockMul (6)

BlockCopy (5) BlockFloatize (4)

BlockMul (7)

BlockPlus (8)

Scheme Output

BlockRound (0)

BlockFloatize (2)

BlockCopy (1)

BlockRound (3)

Schema Input

BlockMul (3)

BlockPlus (7)

BlockFloatize (6)

Schema Output

BlockPlus (0)

BlockCopy (2)

BlockConstNeg1 (1)

BlockFloatize (4)

BlockRound (5)

Schema Input

Fig. 2. Crossover of two schemes. The mother and father are
horizontally divided and the offspring becomes a mix-
ture of both.

their destinations. The mutation operator is illustrated
in Fig. 3.

3 Agent Constraints
Beside the genetic component, Bang also uses formal

logics for the construction and evaluation of agent sys-
tems. Logics can be used both for the construction of
new multi-agent systems, and for the verification of ex-
isting ones.

There are a number of applications for this:

• Sanity check of MAS

When MAS configurations are generated automat-
ically by a genetic algorithm, a lot of the system
configuration will not work at all. Using the con-
straint satisfaction checking described before, it is
possible to sort out these non-functioning systems
without having to actual construct and test them.

• Fault Analysis

When there are non-working part in user-
constructed MAS, our constraint checking system
can isolate the parts of the system that do not sat-
isfy the constraints.



BlockPlus (8)

BlockMul (6)BlockMul (7)

BlockFloatize (4)

BlockConstNeg1 (1)

BlockRound (5)

BlockCopy (5) BlockPlus (0)

BlockCopy (2)

BlockFloatize (4)

Schema Input

Scheme Output

BlockPlus (8)

BlockMul (6)BlockMul (7)

BlockFloatize (4)

BlockConstNeg1 (1)

BlockRound (5)

BlockCopy (5) BlockPlus (0)

BlockCopy (2)

BlockFloatize (4)

Scheme Output

Schema Input

Fig. 3. Mutation on scheme. The destination of two links are
switched.

• System Construction

Given a — possible incomplete — description of
a MAS and a set of constraints, our system can
generate all MAS that satisfy the constraints. This
can be used to automatically construct systems, or
to assist the user: After the user has constructed a
partial system, our system can aid the user in com-
pleting the system by showing possible extensions
of the system

In order to apply formal logics to Bang, agent config-
uration is treated as a constraint satisfaction problem.[2]
The logical description of a Bang 3 agent system consists
of three parts: Descriptions of the agents, constraints on
the individual agents, and constraints on the agent sys-
tem as a whole.

Agent class definitions consist of a description of the
agent’s properties and of constraints on these properties,
where agent descriptions are sets of terms and agent con-
straints are sets of horn-clauses over these terms:

Definition 1 (Agent Class Description) An agent class
description is a termagent class(D, C), whereD is a
description of the properties of the agent, andC is a set
of constraints. The description of properties is a set of
terms. Constraints are horn-clauses of the form

constraint(This)← C1 ∧ C2 ∧ . . . ∧ Cn

with C1 . . . Cn terms, andThis a free variable in
C1 . . . Cn.

Agents are derived from agent class descriptions by
(partially) instantiating the terms of the agent class de-
scription.

A multi-agent system consists of a set of agents and
constraints on the system as a whole:

Definition 2 (Multi-Agent System) A multi-agent sys-
tem description is a termmas(A, Cs) with A a set of

agents,Cs a set of system wide constraints.Cs is a set
of horn clauses of the form

constraint(This)← C1 ∧ C2 ∧ . . . ∧ Cn

with C1 . . . Cn terms, andThis a free variable in
C1 . . . Cn

When constraints are evaluated, variableThis is
unified with a description of the MAS. Reasoning is
straight-forward: The terms can be transferred directly
into a PROLOG-program. Valid configurations are gen-
erated by first attempting to satisfy the internal con-
strains of each agent and than satisfying the system-wide
constrains. This is shown in algorithm 1.

Algorithm 1 Constraint Evaluation
Require: mas(A,Cs)

for all Agentsagent(D, C) ∈ A do
for all constraint(This)← C1∧C2∧. . .∧Cn ∈
C do

evaluateconstraint(mas(A, Cs))
end for

end for
for all constraint(This)← C1 ∧ C2 ∧ . . . ∧ Cn ∈
Cs do

evaluateconstraint(mas(A,Cs))
end for

So far, we have described a generic formalism for the
definition of constraints onto multi-agent systems. In or-
der to use this formalism with Bang 3, some standard
terms and predicates have to be defined.

We start with a simple configuration problem, in
which we are interested whether it is possible to con-
nect agents to each other. For this, the following terms
are used:

name(N) WhereN is unique. This term is instantiated
when an agent is created, and it serves as an iden-
tifier for the agent.

gatein(I, T) WhereI is a name, andT is a data type.
This term means that an agent has an input gate
(i.e. an interface for receiving data) calledI which
is of typeT .

gateout(I, T) WhereI is a name, andT is a data type.
This term means that an agent has an output gate
(i.e. an interface for sending out data) calledI

which is of typeT .

float, int, string These are basic data types.

array(T,A) A complex data type: Array of typeT with
arity A



A connection between two agents is valid if some out-
put gate of the first agent matches an input gate of the
second agent. This is expressed by the following for-
mula:

connects(A,Aout, B, Bin, C)←
in(gateout(Aout, Type), A) ∧

in(gatein(Bin, Type), B) ∧

C = conn(A,Aout, B, Bin)

Here, A and B are agents,Aout is the name of an
output gate of agentA, Bin is the name of an input gate
of agentB, and in unifies the first argument with the
appropriate term in the second argument.

A MAS is valid when all connections between input
and output gates are valid. This can be checked recur-
sively be the following predicate:

check connections(MAS)←
MAS = mas(A, C) ∧

remove element(F, R, C) ∧

F = conn([X, gateout(Xout)],

[Y, gatein(Yin)]) ∧

connects(X,Xout, Y, Yin, F) ∧

check connections(mas(A, R))

Extending the system to more complex relationships
is straightforward. As an example, we show how a no-
tion of trust among agents can be described. The general
idea is that an agentA trusts a agentB if it either knows
directly that the agent is trustworthy, or if agentA trusts
a third agentC, andC trustsB.

This is captured by the following definition:

Definition 3 (Trust) AgentX trusts agentY if it knows
the agent is trustable, or if it knows an agentM which
trusts agentY:

trust(X, Y)←
agent(X, trusts(M)) ∧ trust(M,Y)

With this additional relationship, it is easy to formu-
late a constraint “all agent gates should be matched, and
only agents should be connected who trust each other”:1

trusted MAS =

1check connections and Connections appear both in the
set of constraints, becauseConnections, the actual connections of
agents within the MAS, is itself a constraint onto the system.

(A, [check connections,

check trust, Connections])

check trust(MAS)←
MAS = mas(A,C) ∧

remove element(F, R, C) ∧

F = conn([X, gateout(Xout)],

[Y, gatein(Yin)]) ∧

trust(X, Y) ∧

check trust(mas(A,R))

4 Experiments

This section describes the experiments we have per-
formed with generating the schemes using the genetic
algorithm described above.

The training sets used for experiments represented
various polynomials. The genetic algorithm was gener-
ating the schemes containing the following agents repre-
senting arithmetical operations:Plus (performs the ad-
dition on floats),Mul (performs the multiplication on
floats),Copy (copies the only input (float) to two float
outputs),Round(rounds the incoming float to the inte-
ger) and finallyFloatize (converts the int input to the
float).

The selected set of operators has the following fea-
tures: it allows to build any polynomial with integer co-
efficients. The presence of theRoundallows also another
functions to be assembled. These functions are the ‘poly-
nomials with steps’ that are caused by using theRound
during the computation.

The only constant value that is provided is−1. All
other integers must be computed from it using the other
blocks. This makes it more difficult to achieve the func-
tion with higher coefficients.

The aim of the experiments was to verify the possibili-
ties of the scheme generation by genetic algorithms. The
below mentioned examples were computed on 1.4GHz
Pentium computers. The computation is relatively time
demanding. The duration of the experiment depended on
many parameters. Generally, one generation took from
seconds to minutes to be computed.

The results of the experiments depended on the com-
plexity of the desired functions. The functions, that the
genetic algorithm learned well and quite quickly were
functions likex3 − x or x2y2. The learning of these
functions took from tens to hundred generations, and the
result scheme precisely computed the desired function.



Also more complicated functions were successfully
evolved. The progress of evolving functionx3 −2x2 −3

can be seen in the Fig. 4 and 5. Having in mind, that the
only constant that can be used in the scheme is−1, we
can see, that the scheme is quite big (comparing to the
previous example where there was only approximately
5–10 building blocks) — see Fig. 6. It took much more
time/generations to achieve the maximal fitness, namely
3000 in this case.

On the other hand, learning of some functions re-
mained in the local maxima, which was for example the
case of the functionx2 + y2 + x.

0

100

200

300

400

500

600

700

800

900

1000

0 500 1000 1500 2000 2500 3000 3500

maximal fitness
average fitness

Fig. 4. Functionx3 − 2x2 − 3. The history of the maximal
and average fitness

-6000

-4000

-2000

0

2000

4000

6000

-10 -5 0 5 10

training set
fitness = 0.21
fitness = 0.56

fitness = 51.08
fitness = 1000.00

Fig. 5.Functionx3 − 2x2 − 3. The best schemes from gener-
ation 0, 5, 200 and 3000

5 Conclusion
We have presented a hybrid system that uses a combi-

nation of evolutionary algorithm and a resolution sys-
tem to automatically create and evaluate multi-agent
schemes. So far, the implementation has focused on
relatively simple agents computing parts of arithmeti-
cal expressions. Nevertheless, the sketched experiments
demonstrate the soundness of the approach.

BlockConstNeg1 (0)

BlockFloatize (2)

0

BlockConstNeg1 (1)

BlockFloatize (3)

1

BlockMul (4)

2 3

BlockCopy (5)

4

BlockMul (6)

5 6

BlockCopy (7)

7

BlockCopy (9)

9

BlockMul (28)

34

BlockCopy (10)

10

BlockCopy (13)

13

BlockCopy (11)

11

BlockPlus (14)

14BlockCopy (12)

12

BlockMul (22)

26

15

BlockPlus (16)

18

BlockCopy (15)

1625 17

BlockMul (17)

23

BlockMul (18)

221920

BlockMul (21)

24

28

BlockMul (25)

29

BlockFloatize (19)

30

BlockConstNeg1 (20)

21

33

BlockRound (26)

31

BlockFloatize (23)

BlockPlus (27)

32

BlockConstNeg1 (24)

27

35BlockFloatize (29)

36

BlockPlus (30)

38 37

BlockPlus (31)

39

40

41

8

BlockCopy (8)

Schema Input

Scheme Output

Fig. 6. Functionx3 − 2x2 − 3. The scheme with fitness 1000
(out of 1000), taken from 3000th generation.

In our future work we plan to extend the system
in order to incorporate more complex agents into the
schemes. Our ultimate goal is to be able to propose and
test schemes containing a wide range of computational
methods from neural networks to fuzzy controllers, to
evolutionary algorithms. While the core of the proposed
algorithm will remain the same, we envisage some mod-
ifications in the genetic operators based on our current
experience.

Namely, a finer consideration of parameter values, or
configurations, of basic agents during the evolutionary
process needs to be addressed. So far, the evolutionary
algorithm rather builds the−3 constant by combining
three agents representing the constant1, than modify-
ing the constant agent to represent the−3 directly. We
hope to improve this behavior by introducing another
kind of genetic operator. This mutation-like operator
can be more complicated in the case of real computa-
tional agents such as neural networks, though. Neverthe-
less, this approach can reduce the evolutionary algorithm
search space substantially.

We also plan to extend the capabilities of the reso-
lution system towards more complex relationship types
than the ones described in this paper. Our goal is to use
ontologies for the description of agent capabilities, and



have the CSP-solver reason about these ontologies.
Since the computations are very time consuming, our

next implementation goal is to design a distributed ver-
sion of our algorithm and run it on a cluster of worksta-
tions.

Acknowledgments

This work has been partially supported by Grant
agency of the Czech Republic under grant number
201/02/0428. G. Beuster has been partially supported
by a DAAD postgraduate grant in the framework of the
common special academia program III of the federal
states and the federal government of Germany.

References
[1] P. Bonissone. Soft computing: the convergence of emerg-

ing reasoning technologies.Soft Computing, 1:6–18,
1997.

[2] Eugene C. Freuder Daniel Sabin. Configuration as com-
posite constraint satisfaction. In George F. Luger, editor,
Proceedings of the (1st) Artificial Intelligence and Man-
ufacturing Research Planning Workshop, pages 153–161.
AAAI Press, 1996, 1996.

[3] S. Franklin and A. Graesser. “Is it an agent, or just a pro-
gram?”: A taxonomy for autonomous agents. InIntelli-
gent Agents III, pages 21–35. Springer-Verlag, 1997.

[4] R. Neruda, P. Krǔsina, P. Kudov́a, and Z. Petrov́a. Multi-
agent environment for hybrid AI models. InArtificial
Neural Nets and Genetic Algorithms. Proceedings of the
ICANNGA 2001 Conference, Vienna, 2001. Springer-
Verlag.

[5] J. S. Russel and P. Norvig.Artificial Intelligence: A Mod-
ern Approach. Prentice-Hall International, 1995.

[6] G. Weiss, editor. Multiagent Systems. The MIT Press,
1999.


