Ontologies

Gerd Beuster

What is an Ontology?

Philosphy

"Ontology is the study of what there is, an inventory of what exists. An ontological commitment is a commitment to an existence claim."

http://www.artsci.wustl.edu/~philos/MindDict/ontology.html

What is an Ontology?

Artificial Intelligence

"An ontology is an explicit specification of a conceptualization. [...] In such an ontology, definitions associate the names of entities in the universe of discourse (e.g., classes, relations, functions, or other objects) with human-readable text describing what the names mean, and formal axioms that constrain the interpretation and well-formed use of these terms. Formally, an ontology is the statement of a logical theory."

http://www-ksl.stanford.edu/kst/what-is-an-ontology.html

Why Ontologies?

- Philosphical issues...
- Modelling
 Using a well founded model of reality.
- Communication
 Knowing what we are talking about.
- Reasoning
 Drawing conclusion from the knowledge about what is.
- (At least) the last three items require formal ontologies!

Why Ontologies — Agent Perspective

- Explicit connection between agent's representation of knowledge and reality
- Share knowledge
- Translate between conceptualizations of the world
- Use and extend knowledge about the world

Agent Communication Languages

KQML (Knowledge Query and Manipulation Language)

- Example
- Weakness: No well defined semantics
- Declared dead

Agent Communication Languages

FIPA-ACL (Foundation for Intelligent Physical Agents)

- Defines standard for agent communication
- Strong industry involvement
- Large set of specifications of all aspects of agent communication architecture.
- Basis for AgentCities
- Also defines an Ontology Agent communication interface

Univ. Koblenz Al Group Involvement

Using ontologies for...

- Web Search
 - Formalization of food domain
 - If the user is looking for "Pizza", the agent knows to search for italian restaurants.
- Slicing book
 - Conceptualization of mathematical analysis
 - Depending on what the user want to learn, an individual book for her is created.

Formal Ontology - An Example

 $\forall x : \mathsf{Mercedes}(x) \to \mathsf{Car}(x)$

 $\forall x : \mathsf{Peugot}(x) \to \mathsf{Car}(x)$

 $\forall x : \mathbf{Car}(x) \to \mathbf{Vehicle}(x)$

We need generic ontologies!

- Common representation of terms
- Shared set of ontology definitions
- Common logical theory

Formal Ontologies

- CycL
 - Used in CyC
 - Formalism for FOL
- KIF
 "Knowledge Interchange Format"
 Formalization of FOL in Lisp-notation.
- Goal of KIF: Allow the exchange of logical formulas

Ontolingua

- Based on KIF
- Goal: Allow the exchange of ontologies
- For this reason...
 - Using established representation mechanism
 - Very expressive: FOL + some second order constructs (invers,...)
 - Nice HTML interface
 - Translators for other representation formalisms.
 - Drawback: No efficient method for automated reasoning!

Description Logics

- Formal logics based on sets
- T-Box: Terminological knowledge

```
Mercedes 

□ Vehicle
```

(In FOL: CarOwner(x) = Human(x) \land Owns(x,y) \land Car(y))

Descripion Logics

A-Box: Assertional Knowledge

Human(Fred)

Mercedes(Lilly)

Owns(Fred, Lilly)

Description Logics

- In between propositional logic and FOL
- Equivalent to FOL with arity of predicate restricted to 1 or 2.
- Equivalent to modal logics
- Worst case complexity still bad (PSPACE, NEXPTIME), but average case complexity O.K
- There are efficent implementations of inference engines.

Semantic Web...

Description Logics incorporated in upcoming ontology standards.

- Semantic Web
- "The Semantic Web is an extension of the current web in which information is given well-defined meaning, better enabling computers and people to work in cooperation."

Tim Berners-Lee, James Hendler, Ora Lassila, The Semantic Web, Scientific American, May 2001

- W3C-Standard
- Based on XML and DL

Semantic Web Layers

(From http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html)

- Resource Description Framework
- Example "There is someone called Fred, with the email address fred@foo.org."

DAML+OIL

- DARPA Agent Markup Language (DAML)
- Ontology Inference Language (OIL)
- United in DAML+OIL
- Example: Car Vehicle

```
<daml:Class rdf:ID="Car">
    <rdfs:label>Car</rdfs:label>
    <daml:subClassOf rdf:resource="#Vehicle"/>
</daml:Class>
```

DAML+OIL — Another example

CarOwner = Human □ owns.Car

```
<daml:ObjectProperty rdf:ID="owns">
  <rdfs:comment>
   Only humans can own something
 </rdfs:comment>
 <rdfs:domain rdf:resource="#Human"/>
</daml:ObjectProperty>
<daml:Class rdf:ID="CarOwner">
 <rdfs:label>CarOwner</rdfs:label>
 <daml:intersectionOf rdf:parseType="daml:collection">
    <daml:Class rdf:about="#Human"/>
    <daml:Restriction>
      <daml:onProperty rdf:resource="#owns"/>
      <daml:hasClass rdf:about="#Car"/>
    </daml:Restriction>
 </daml:intersectionOf>
</daml:Class>
```

DAML+OIL Ontologies

As of today, there are more than hundred DAML+OIL ontologies for various aspects of life defined:

```
assembly
                                            BibTex
airport
                      association
                                            bioinformatics
AirportCode
                      Assorted
                                            Biology
alias
                      aviation
                                            boats
annotation
                      baseball
                                             Brewers
Army
                      Beer
Art
                      Bibliographies
```

... but none for our purposes.

There is no ontology to define the general properties of agents, and there are is no ontology for evolutionary computing.

→ creating such an ontology should be interesting for BANG 3.

Example: Beer

```
Beer (alcoholContent, madeFrom) * Ingredient ()
      o Ale ()
                                          o Hops ()
            + Bitter ()
                                                + Cascade ()
            + BrownAle ()
                                                + Chinook ()
                                                + Galena ()
            + Mild ()
            + PaleAle ()
                                                + Hallertau ()
      + ScotchAle ()
                                                + KentGoldings ()
      o Bock ()
                                                + Tettnang ()
                                                + Willamette ()
      o Lager ()
      o Pilsner ()
                                          o Malt ()
                                                + Black ()
      o Porter ()
                                                + Munich ()
* Brewery (brews)
                                                + Pale ()
 o Microbrewery ()
                                          o Yeast ()
```

Example: Baseball

```
# Event ()
 Base ()
    * instance First
                                * AggregateEvent ()
    * instance HomePlate
                                      o AtBat (player)
                                      o Game (date, innings)
    * instance Second
                                             + AllStarGame ()
    * instance Third
                                             + ExhibitionGame ()
# Contract (player, team)
                                             + PostSeasonGame ()
# Division (team)
                                             # WorldSeriesGame ()
# Employee (person, team)
                                      o Inning (number)
    * Coach ()
                                * BattingEvent ()
    * Manager ()
                                      o Ball ()
    * Player ()
                                      o Bunt ()
                                      o Fly ()
                                      o Foul ()
                                       o Hit ()
                                             + Double ()
                                             + HomeRun ()
                                             + Single ()
                                             + Triple ()
                                       o HitByPitch ()
```

What to do?

- DAML+OIL ontology for the kind of agents used by BANG 3
- Implementation of agents using ontologies and an ontology agent
- Reasoning about ontologies / inference system
- Agents, ontologies and trust
- AgentCities and other agents out there...