Sebastian Iwanowski FH Wedel

3. Modular Arithmetic3.2. Applications in Cryptography

Referenzen zum Nacharbeiten:

Köpf 5.5 Dankmeier – Zusatz (Handout-Server)

Practical applications of modular arithmetic

Authentification:

Fiat-Shamir Scheme

(utilises the difficulty of computing the modular square root)

Key exchange:

Diffie-Hellman Key Exchange

(utilises the difficulty of computing the modular logarithm)

Practical applications of modular arithmetic

The dilemma of authentification

- 1. Alice knows something which identifies her.
- 2. She will not show this knowledge in order to prevent that others pretend her identity.
- 3. But she wants to prove that she has got this knowledge.

from: Seminarvortrag Annuth

Authentification: Fiat-Shamir Scheme

- Alice chooses a modulus n=p*q for a residue class and an element s which is coprime to n and computes s^2 mod n.
- 2. The number s is her secret she will never reveal.
- 3. Authentification: Alice proves that she knows s.

Authentification process:

- 1. Alice publishes $s^2 \mod n$ and n, but not the prime factors p and q of n.
- Alice additionally posts an r² mod n which is coprime to n. Now Bob may ask:
 - either a) What is s*r mod n? \rightarrow Bob's test $(s*r)^2 \equiv s^2 * r^2 \pmod{n}$? or b) What is r mod n? \rightarrow Bob's test $r_{neu}^2 \equiv r^2 \pmod{n}$?
- If Malloy knew Bob's queries in advance, he could cheat and pretend to be Alice. This is why step 2 is executed several times.

Authentification: Fiat-Shamir Scheme

- Alice chooses a modulus n=p*q for a residue class and an element s which is coprime to n and computes s^2 mod n.
- 2. The number s is her secret she will never reveal.
- 3. Authentification: Alice proves that she knows s.

How can Malloy cheat?

- a) If Malloy knows that r is queried,
 he may post any r² and answer Bob's query with the chosen r
 Malloy's problem: He could not answer the query for s*r because he does not know s.
- b) If Malloy knows that s*r is queried, he may choose any number a, compute a², multiply the inverse of s² with a² und post the result r² = (s²)⁻¹ • a². If Bob asks for s*r, Malloy answers with a. Since r² = (s²)⁻¹ • a², we get: s²*(s²)⁻¹*a² = a² Malloy's problem: He could not answer the query for r.

Practical applications of modular arithmetic

The problem of key exchange via internet

- 1. Alice wants to exchange keys with Bob.
- 2. Nobody else should be eligible to use the keys.
- 3. The exchange channel is unsafe.

from: Seminarvortrag Annuth

Diffie-Hellman key exchange

- 1. Let the modulus n and an element s mod n be public.
- 2. Alice chooses a private positive integer a and computes $s^a \equiv \alpha \pmod{n}$
 - $s \equiv \alpha \pmod{n}$ $s^b \equiv \beta \pmod{n}$
- 3. Bob chooses a private positive integer a and computes
- 4. Alice and Bob exchange α and β via the unsafe channel.
- 5. Alice computes $\beta^a \equiv s^{ba} \equiv k \pmod{n}$ Bob computes $\alpha^b \equiv s^{ab} \equiv k \pmod{n}$
- 6. k is the common key.

If somebody captures α and β , how should one get a or b?

$$\log_{s} \beta \equiv ? \vee \log_{s} \alpha \equiv ?$$

Asymmetric cryptography: RSA

Alice provides public key e and keeps private key d which serves to decrypt any message encrypted by e Details: Köpf 5.5

Bob wants to send a message to Alice which only she can read.

- chooses two primes p,q
 and computes n = p q
- computes φ = (p-1) (q-1)
 and chooses e where gcd(e,φ) = 1
- computes $d = e^{-1} \mod \varphi$
- publishes n and e, keeps d in secret and deletes p,q,φ

d may be computed efficiently, when φ is known.

 φ is known when the prime factors of n are known.

 encrypts N by N^e mod n and sends this message to Alice.

decrypts N = (N^e mod n)^d mod n