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most of the slides are translations of a seminar presentation of Hendrik Annuth



Computer Algebra 3

Residue classes

The most used residue class ever:

There are 12 equivalence classes for time:

ℤ12 = {[0]12;[1]12;[2]12;[3]12;[4]12;[5]12;
[6]12;[7]12;[8]12;[9]12;[10]12;[11]12}

The time 0:00, 12:00 and 24:00 are called
by the same spoken time (12 o´clock).y p ( )
They are in the same equivalence class forming a residue 
class in the ring of residues.
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Computer Algebra 3

Residue classes

Computing with residue classes
|ℤ12|=12|ℤ12| 12

ℤ12 = {[0]12;[1]12;[2]12;[3]12;[4]12;[5]12;
[6]12;[7]12;[8]12;[9]12;[10]12;[11]12}

[0]12 = {...;-24;-12;0;12;24;...}
[8]12= { ;-16;-4;8;20;32; }[8]12= {...; 16; 4;8;20;32;...}

[8]12+[11]12=[7]12, because     8 + 11 = 19 = 12*1 + 7  ⇒ 19 ∈ [7]12

[4]12*[8]12=[8]12, because    4 * 8 = 32 = 12*2 + 8  ⇒ 32 ∈ [8]12
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Computer Algebra 3

Residue classes

[x]12* [2]12 =  [10]12

S h f  [ 10/2“]Search for [„10/2“]12

[2]12*[0]12=  [0]12 Two solutions found, but only by testing:[ ] [ ] [ ]
[2]12*[1]12=  [2]12

[2]12*[2]12=  [4]12

[2]12*[3]12=  [6]12

[2]12*[4]12=  [8]12

Two solutions found, but only by testing:

[2]12*[x]12 =  [7]12

[2]12*[4]12=  [8]12

[2]12*[5]12=  [10]12

[2]12*[6]12=  [0]12

[2]12*[7]12=  [2]12

Modular division is not known to be solved 
efficiently. And the operation „*2“ is not
invertable for all operands in ℤ[ ] [ ] [ ]

[2]12*[8]12=  [4]12

[2]12*[9]12=  [6]12

[2]12*[10]12=[8]12

[2]12*[11]12=[10]12

invertable for all operands in ℤ12
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[2]12*[11]12=[10]12



Computer Algebra 3

Residue classes

Example for a residue class set ℤp
with unique and well-defined division:

(ℤ7, +)   0 1 2 3 4 5 6                (ℤ7, *)   0 1 2 3 4 5 6

0    0 1 2 3 4 5 6 0    0 0 0 0 0 0 00    0 1 2 3 4 5 6
1    1 2 3 4 5 6 0
2    2 3 4 5 6 0 1
3    3 4 5 6 0 1 2

0    0 0 0 0 0 0 0
1    0 1 2 3 4 5 6
2    0 2 4 6 1 3 5
3    0 3 6 2 5 1 43    3 4 5 6 0 1 2

4    4 5 6 0 1 2 3
5    5 6 0 1 2 3 4
6    6 0 1 2 3 4 5

3    0 3 6 2 5 1 4
4    0 4 1 5 2 6 3
5    0 5 3 1 6 4 2
6    0 6 5 4 3 2 16    6 0 1 2 3 4 5 6    0 6 5 4 3 2 1

In 7 the operation „*“ is invertable for all operands 
except for 0  but is this also possible in an efficient way
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except for 0, but is this also possible in an efficient way,
i.e. other than testing ?



Computer Algebra 3

Residue classes

Division via determining the inverse element:

(ℤ7, *)   0 1 2 3 4 5 6

0    0 0 0 0 0 0 0
Determining the inverse element of 2:

x = ??)7(mod10*2 x

0    0 0 0 0 0 0 0
1    0 1 2 3 4 5 6
2    0 2 4 6 1 3 5 )7(mod4

)7(mod2
1 


a

a

3    0 3 6 2 5 1 4
4    0 4 1 5 2 6 3
5    0 5 3 1 6 4 2 )7( d5404*10

)7(mod*10 1 ax

6    0 6 5 4 3 2 1 )7(mod5404*10 x
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Computer Algebra 3

Residue classes

• Inverse elements may be determined via the extended Euclidean algorithm:

Division via determining the inverse element:

• Inverse elements may be determined via the extended Euclidean algorithm:

computes a-1 mod n, whenever gcd(a,n) = 1
⇒ works for all a ∈ ℤn, if n is a prime number run time: O(#n2)

Summary:

• Modular multiplication is always efficient.

• Modular division is efficient for prime modules

• Modular division for composed modules n = p ∙ q:
gcd(a,n) = 1: efficient
gcd(a n) > 1: no efficient algorithm known!
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gcd(a,n) > 1: no efficient algorithm known!



Computer Algebra 3

Other discrete functions

The following operations are analysed in detail:

Taking powers

Computing square roots

Computing logarithms
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Computer Algebra 3

Taking powers

Powers in ℤ7

(mod 7) is not mentioned for the sake of readability (mod 7) is not mentioned for the sake of readability 
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We do not get all residues as a result

appearently  a(7-1)=1
generating elements
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appearently, a( )=1



Computer Algebra 3

Taking powers

Fermat‘s little theorem
ℙLet p ∈ ℙ, then:

 p) (mod 1x 1)-(p 

Proof by induction over x (taking an arbitrary p):

)(1. 

Assertion: p) (modx x
*x|p)(mod1x

p

1)-(p





2. Base: Let x be 0 p) (mod 00p 
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3.    Conclusion: p) (mod 1x1)(x p p) (modx x p  ⇒



Computer Algebra 3

Taking powers

to prove:  
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q.e.d.



Computer Algebra 3

Computing square roots

Square roots in ℤ7

)7(mod24 
47*3255

)7(mod5)27(4
2 



473255 
 752

)(mod)2(2)( 222222 pxpxpxpxpxpxx 

)7?( d6?5}52{4?3}43{2}61{1 )7?(mod6?;5};5;2{4?;3};4;3{2};6;1{1 
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Computer Algebra 3

Computing square roots

Square roots in ℤ7

(mod 7) is not mentioned for the sake of readability  

551 331

(mod 7) is not mentioned for the sake of readability  

111 221 441 661 
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)7?(mod6?;5};5;2{4?;3};4;3{2};6;1{1 
p )( d12/)1( h  t   t?
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apa p  )(mod12/)1( has got a square root?



Computer Algebra 3

Computing square roots

Square roots in ℤ7

(mod 7) is not mentioned for the sake of readability  

661 551 441331221111

(mod 7) is not mentioned for the sake of readability  
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)7?(mod6?;5};5;2{4?;3};4;3{2};6;1{1 
p ))( d1(2/)1( h  t t   t?
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appa p  ))(mod1(2/)1( has not got a square root?



Computer Algebra 3

Computing square roots

appa p  ))(mod1(2/)1(

apa p  )(mod12/)1( has got a square root

has not got a square root

How come ?

appa p  ))(mod1()( has not got a square root

Element 1 is a result in powers of each element,
because: )7(mod654321 66666 because:

Since exponent 6 is even, we may compute the square root:

)7(mod654321 

      pp 111;11 

FH Wedel Prof. Dr. Sebastian Iwanowski CA31 slide 15



Computer Algebra 3

Computing square roots

May generating elements never have square roots ?
By definition  the even powers

331
The powers of generating elements
themselves as well as of the other

By definition, the even powers
of generating elements do have
square roots:
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themselves as well as of the other
generating elements must be odd
if the modulus is a prime number. 
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Computer Algebra 3

Computing square roots

Squares in ℤ667  f(x)=x2

For small numbers
known parabolic form

Symmetry by
)(mod)( 22 ppxx 

There are also more 
solutions than 2,
if ℤ is composed (n p*q)if ℤn is composed (n=p*q)
667=23*29

 602;352;315;62506 
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 602;352;315;62506 



Computer Algebra 3

Summary for square roots

How to compute a square root: Let a ∈ ℤn be known
Let x ∈ ℤ be searched

In a residue set with prime modulus n  there are efficient methods to compute 

Let x ∈ ℤn be searched

In a residue set with prime modulus n, there are efficient methods to compute 
square roots of the form 

If n=p*q is sufficiently large (more than 200 digits), even modern computers need 

)(mod nxa 

years. However, x2>n should hold, i.e. results between 0 and      have to be 
avoided. The reason is that for real numbers, numerical solutions are available.  

n

But the inverse, the square is computable easily: )(mod2 nxa 
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Computer Algebra 3

Discrete Logarithms

Logarithms in ℤ7

Q  Whi h i  th  l t I h  t  ti t  2 ith

A                                 b)7( d24l

Query: Which is the element I have to exponentiate 2 with
in order to get 4? )7(mod42 x

)7( d422Answer:                                because

and                                      because

)7(mod24log 2  )7(mod422 

)7(mod54log 2  )7(mod447*43225 

)7(mod52 xQuery: )(

)7?(mod5log 2 Answer:                                   no solution
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Computer Algebra 3

Discrete Logarithms

Logarithms in ℤ7

(mod 7) is not mentioned for the sake of readability   (mod 7) is not mentioned for the sake of readability   
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Not all elements of ℤ7 are reached.
S  l t   t i

?5log 2 

Generating elements have a unique solution.
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Some elements are not unique.



Computer Algebra 3

Discrete Logarithms

Powers in ℤ1009 for base 2, f(x)=2x

Initially the known
exponential function

Graph is always periodic for
a divisor of n-1.
Here: (n 1)=(1009 1)Here: (n-1)=(1009-1)

1008/2=504
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Computer Algebra 3

Summary for discrete Logarithms

How to compute discrete logarithms
Let a ∈ ℤn be known

If n is suffieciently large (2007: at least 200 digits) )(modlog nxab 

Let a ∈ ℤn be known
Let x ∈ ℤn be searched

If n is suffieciently large (2007: at least 200 digits),
Can only be computed within years even on modern computers.
However, bx>n should hold. Otherwise a solution may be obtained using a numerical 
method.

)(modlog nxab 

On the other hand, the invers function
may be computed easily: )(mod nxba 
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Computer Algebra 3

Summary: Computation of modular functions

• Find the multiplicative inverses b/a mod n (modular division):

(Multiplication is efficiently solvable for each n.
Al ith f di i iAlgorithms for division:

for prime moduli n: O(#n2) using the extended Euclidean Algorithm
for composed moduli n, gcd(a,n) = 1: see above
für composed moduli n, gcd(a,n) > 1: no efficient algorithm knownp , g ( , ) g

• Find the square root mod n:
Inverse of squaring which is efficiently solvableInverse of squaring which is efficiently solvable.
Algorithm for square root:

for prime moduli: there are polynomial methods (not trivial)
for composed moduli n: no efficient algorithm known

• Find the logarithm mod n
Inverse of exponentiation which is efficiently solvable.
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p y
Algorithms for the logarithm:

no efficient algorithm known for any n.


