Sebastian Iwanowski FH Wedel

3. Modular Arithmetic3.1 Computation of modular functions

References for repetition and deepening your knowledge:

Köpf 4 (except for 4.3, 4.6) (in German) von zur Gathen 4.1, 4.2

most of the slides are translations of a seminar presentation of Hendrik Annuth

Residue classes

The most used residue class ever:

There are 12 equivalence classes for time:

$$\mathbb{Z}_{12} = \{ [0]_{12}; [1]_{12}; [2]_{12}; [3]_{12}; [4]_{12}; [5]_{12}; \\ [6]_{12}; [7]_{12}; [8]_{12}; [9]_{12}; [10]_{12}; [11]_{12} \}$$

The time 0:00, 12:00 and 24:00 are called by the same spoken time (12 o ´clock). They are in the same equivalence class forming a residue class in the ring of residues.

Residue classes

Computing with residue classes

|**ℤ**12**|=**12

 $\mathbb{Z}_{12} = \{ [0]_{12}; [1]_{12}; [2]_{12}; [3]_{12}; [4]_{12}; [5]_{12}; \\ [6]_{12}; [7]_{12}; [8]_{12}; [9]_{12}; [10]_{12}; [11]_{12} \}$

 $[0]_{12} = \{ \dots; -24; -12; 0; 12; 24; \dots \}$ [8]₁₂= {...; 16; 4; 8; 20; 32; ...}

 $[8]_{12} + [11]_{12} = [7]_{12}, \text{ because } 8 + 11 = 19 = 12^{*}1 + 7 \Rightarrow 19 \in [7]_{12}$ $[4]_{12} * [8]_{12} = [8]_{12}, \text{ because } 4^{*}8 = 32 = 12^{*}2 + 8 \Rightarrow 32 \in [8]_{12}$

Residue classes

 $[x]_{12}^{*} [2]_{12} = [10]_{12}$ Search for $["10/2"]_{12}$

 $\begin{bmatrix} 2 \end{bmatrix}_{12}^{*} \begin{bmatrix} 0 \end{bmatrix}_{12} = \begin{bmatrix} 0 \end{bmatrix}_{12} \\ \begin{bmatrix} 2 \end{bmatrix}_{12}^{*} \begin{bmatrix} 1 \end{bmatrix}_{12} = \begin{bmatrix} 2 \end{bmatrix}_{12} \\ \begin{bmatrix} 2 \end{bmatrix}_{12}^{*} \begin{bmatrix} 2 \end{bmatrix}_{12} = \begin{bmatrix} 4 \end{bmatrix}_{12} \\ \begin{bmatrix} 2 \end{bmatrix}_{12}^{*} \begin{bmatrix} 3 \end{bmatrix}_{12} = \begin{bmatrix} 6 \end{bmatrix}_{12} \\ \begin{bmatrix} 2 \end{bmatrix}_{12}^{*} \begin{bmatrix} 4 \end{bmatrix}_{12} = \begin{bmatrix} 8 \end{bmatrix}_{12} \\ \begin{bmatrix} 2 \end{bmatrix}_{12}^{*} \begin{bmatrix} 5 \end{bmatrix}_{12} = \begin{bmatrix} 10 \end{bmatrix}_{12} \\ \begin{bmatrix} 2 \end{bmatrix}_{12}^{*} \begin{bmatrix} 6 \end{bmatrix}_{12} = \begin{bmatrix} 0 \end{bmatrix}_{12} \\ \begin{bmatrix} 2 \end{bmatrix}_{12}^{*} \begin{bmatrix} 6 \end{bmatrix}_{12} = \begin{bmatrix} 0 \end{bmatrix}_{12} \\ \begin{bmatrix} 2 \end{bmatrix}_{12}^{*} \begin{bmatrix} 8 \end{bmatrix}_{12} = \begin{bmatrix} 4 \end{bmatrix}_{12} \\ \begin{bmatrix} 2 \end{bmatrix}_{12}^{*} \begin{bmatrix} 9 \end{bmatrix}_{12} = \begin{bmatrix} 6 \end{bmatrix}_{12} \\ \begin{bmatrix} 2 \end{bmatrix}_{12}^{*} \begin{bmatrix} 10 \end{bmatrix}_{12} = \begin{bmatrix} 6 \end{bmatrix}_{12} \\ \begin{bmatrix} 2 \end{bmatrix}_{12}^{*} \begin{bmatrix} 10 \end{bmatrix}_{12} = \begin{bmatrix} 8 \end{bmatrix}_{12} \\ \begin{bmatrix} 2 \end{bmatrix}_{12}^{*} \begin{bmatrix} 10 \end{bmatrix}_{12} = \begin{bmatrix} 8 \end{bmatrix}_{12} \\ \begin{bmatrix} 2 \end{bmatrix}_{12}^{*} \begin{bmatrix} 11 \end{bmatrix}_{12} = \begin{bmatrix} 10 \end{bmatrix}_{12} \end{bmatrix}$

Two solutions found, but only by testing:

$$[2]_{12} * [x]_{12} = [7]_{12}$$

Modular division is not known to be solved efficiently. And the operation " *2 " is not invertable for all operands in \mathbb{Z}_{12}

Residue classes

Example for a residue class set \mathbb{Z}_p with unique and well-defined division:

(Z7, +)	0123456	(ℤァ, *)	0123456
0	0123456	0	0000000
1	1234560	1	0123456
2	2345601	2	0246135
3	3456012	3	0362514
4	4560123	4	0415263
5	5601234	5	0531642
6	6012345	6	0654321

In \mathbb{Z}_7 the operation "* is invertable for all operands except for 0, but is this also possible in an efficient way, i.e. other than testing ?

Residue classes

Division via determining the inverse element:

Residue classes

Division via determining the inverse element:

• Inverse elements may be determined via the extended Euclidean algorithm:

```
computes a^{-1} \mod n, whenever gcd(a,n) = 1
\Rightarrow works for all a \in \mathbb{Z}_n, if n is a prime number
```

run time: O(#n²)

Summary:

- Modular multiplication is always efficient.
- Modular division is efficient for prime modules
- Modular division for composed modules n = p q: gcd(a,n) = 1: efficient gcd(a,n) > 1: no efficient algorithm known!

Other discrete functions

The following operations are analysed in detail:

Taking powers

Computing square roots

Computing logarithms

Taking powers

Taking powers

Fermat's little theorem Let $p \in \mathbb{P}$, then: $x^{(p-1)} \equiv 1 \pmod{p}$

Proof by induction over x (taking an arbitrary p):

1.
$$x^{(p-1)} \equiv 1 \pmod{p} | *x$$

Assertion: $x^p \equiv x \pmod{p}$

2. Base: Let x be 0 $0^p \equiv 0 \pmod{p}$

3. Conclusion: $x^p \equiv x \pmod{p} \Rightarrow (x+1)^p \equiv x+1 \pmod{p}$

Taking powers

to prove: $(x+1)^p \equiv x+1$ $\left| (x+1)^{p} \equiv x^{p} + {p \choose 1} x^{p-1} + {p \choose 2} x^{p-2} + \dots + {p \choose p-1} x^{1} + 1 \pmod{p} \right|$ $\binom{p}{k} = \frac{p!}{(p-k)!*k!} = \frac{p*(p-1)!}{(p-k)!*k!}$ $(x+1)^{p} \equiv x^{p} + p^{*} \left(\frac{(p-1)!}{(p-1)!*1!} x^{p-1} + \frac{(p-1)!}{(p-2)!*2!} x^{p-2} + \dots + \frac{(p-1)!}{1!*(p-1)!} x^{1} \right) + 1 \pmod{p}$ $(x+1)^{p} \equiv x^{p} + 1 \pmod{p} \land x^{p} \equiv x \pmod{p} \Longrightarrow (x+1)^{p} \equiv x+1 \pmod{p}$ q.e.d.

Computing square roots

Square roots in \mathbb{Z}_7

 $\sqrt{4} \equiv 2 \pmod{7} \qquad \wedge \sqrt{4} \equiv (7-2) \equiv 5 \pmod{7}$ $5^2 = 25 = 3*7 + 4$ $-2 \in [5]_7$

 $x^{2} \equiv (x-p)^{2} \equiv x^{2} - 2xp + p^{2} \equiv x^{2} - p(2x-p) \equiv x^{2} \pmod{p}$

$$\sqrt{1} \equiv \{1;6\}; \sqrt{2} \equiv \{3;4\}; \sqrt{3} \equiv ?; \sqrt{4} \equiv \{2;5\}; \sqrt{5} \equiv ?; \sqrt{6} \equiv ? \pmod{7}$$

Computing square roots

(mod 7) is not mentioned for the sake of readability

Computing square roots

(mod 7) is not mentioned for the sake of readability

Computing square roots

 $a^{(p-1)/2} \equiv 1 \pmod{p} \Rightarrow a$ has got a square root

 $a^{(p-1)/2} \equiv (p-1) \pmod{p} \Rightarrow a$ has not got a square root

How come ?

Element 1 is a result in powers of each element, because: $1 \equiv 2^6 \equiv 3^6 \equiv 4^6 \equiv 5^6 \equiv 6^6 \pmod{7}$

Since exponent 6 is even, we may compute the square root: $\sqrt{1} \equiv \{1;-1\} \land -1 \in [p-1]_p$

Computing square roots

May generating elements never have square roots ?

By definition, the even powers of generating elements do have square roots:

The powers of generating elements themselves as well as of the other generating elements must be odd if the modulus is a prime number.

Computing square roots

Squares in \mathbb{Z}_{667} f(x) = x²

For small numbers known parabolic form

Symmetry by $x^2 \equiv (x - p)^2 \pmod{p}$

There are also more solutions than 2, if \mathbb{Z}_n is composed (n=p*q) 667=23*29

 $\sqrt{506} = \{62; 315; 352; 602\}$

Summary for square roots

How to compute a square root:

Let $a \in \mathbb{Z}_n$ be known Let $x \in \mathbb{Z}_n$ be searched

In a residue set with prime modulus n, there are efficient methods to compute square roots of the form $\sqrt{a} \equiv x \pmod{n}$

If n=p*q is sufficiently large (more than 200 digits), even modern computers need years. However, x^2 >n should hold, i.e. results between 0 and \sqrt{n} have to be avoided. The reason is that for real numbers, numerical solutions are available.

But the inverse, the square is computable easily: $a^2 \equiv x \pmod{n}$

Discrete Logarithms

Logarithms in \mathbb{Z}_7

Query: Which is the element I have to exponentiate 2 with in order to get 4? $2^x \equiv 4 \pmod{7}$

Answer: $\log_2 4 \equiv 2 \pmod{7}$ because $2^2 \equiv 4 \pmod{7}$

and $\log_2 4 \equiv 5 \pmod{7}$ because $2^5 \equiv 32 \equiv 4 * 7 + 4 \equiv 4 \pmod{7}$

Query: $2^x \equiv 5 \pmod{7}$ Answer: $\log_2 5 \equiv ? \pmod{7}$ no solution

Discrete Logarithms

		Logari	ithms in $\mathbb Z$	<i>ק</i> רג			
	(mod 7)	is not mentior	ned for the sak	e of readability	,		
$1^1 \equiv 1$	$2^1 \equiv 2$	$3^1 \equiv 3$	$4^1 \equiv 4$	$5^1 \equiv 5$	$6^1 \equiv 6$		
$1^2 \equiv 1$	$2^2 \equiv 4$	$3^2 \equiv 2$	$4^2 \equiv 2$	$5^2 \equiv 4$	$6^2 \equiv 1$		
$1^3 \equiv 1$	$2^3 \equiv 1$	$3^3 \equiv 6$	$4^3 \equiv 1$	$5^3 \equiv 6$	$6^3 \equiv 6$		
$1^4 \equiv 1$	$2^4 \equiv 2$	$3^4 \equiv 4$	$4^4 \equiv 4$	$5^4 \equiv 2$	$6^4 \equiv 1$		
$1^5 \equiv 1$	$2^5 \equiv 4$	$3^5 \equiv 5$	$4^5 \equiv 2$	$5^5 \equiv 3$	$6^5 \equiv 6$		
$1^6 \equiv 1$	$2^6 \equiv 1$	$3^6 \equiv 1$	$4^6 \equiv 1$	$5^6 \equiv 1$	$6^6 \equiv 1$		
	Generating elements have a unique solution						
Not all elements of \mathbb{Z}_7 are reached.				$\log_2 5 \equiv ?$			
Some	e elements are	not unique.					

Discrete Logarithms

Powers in \mathbb{Z}_{1009} for base 2, $f(x) = 2^x$

Initially the known exponential function

Graph is always periodic for a divisor of n-1. Here: (n-1)=(1009-1) 1008/2=504

Summary for discrete Logarithms

How to compute discrete logarithms

Let $a \in \mathbb{Z}_n$ be known Let $x \in \mathbb{Z}_n$ be searched

If n is sufficiently large (2007: at least 200 digits), $\log_b a \equiv x \pmod{n}$ Can only be computed within years even on modern computers. However, $b^x > n$ should hold. Otherwise a solution may be obtained using a numerical method.

On the other hand, the invers function may be computed easily: $b^a \equiv x \pmod{n}$

Summary: Computation of modular functions

• Find the multiplicative inverses b/a mod n (modular division):

(Multiplication is efficiently solvable for each n.

Algorithms for division:

for prime moduli n: $O(\#n^2)$ using the extended Euclidean Algorithm for composed moduli n, gcd(a,n) = 1: see above für composed moduli n, gcd(a,n) > 1: no efficient algorithm known

• Find the square root mod n:

Inverse of squaring which is efficiently solvable. Algorithm for square root:

for prime moduli: there are polynomial methods (not trivial) for composed moduli n: no efficient algorithm known

• Find the logarithm mod n

Inverse of exponentiation which is efficiently solvable. Algorithms for the logarithm:

no efficient algorithm known for any n.