Computer Algebra

Sebastian lwanowski
FH Wedel

3. Modular Arithmetic
3.1 Computation of modular functions

References for repetition and deepening your knowledge:

Kopf 4 (except for 4.3, 4.6) (in German)
von zur Gathen 4.1, 4.2

most of the slides are translations of a seminar presentation of Hendrik Annuth

Computer Algebra 3

Residue classes

The most used residue class ever:

There are 12 equivalence classes for time:

le — {[0]12; [1]12; [2] 12, [3]12; [4]12; [5] 12,
[6] 12, [7] 12, [8] 12, [9] 12, [10] 12, [11] 12}

The time 0:00, 12:00 and 24:00 are called
by the same spoken time (12 o™ clock).
They are in the same equivalence class forming a residue
class in the ring of residues.

FH Wedel Prof. Dr. Sebastian Iwanowski CA31 slide 2

Computer Algebra 3

Residue classes

Computing with residue classes
| Z.12]=12
Lz = {[0]:2;[1]12; [2]12; [3)s2; [4]12; [5] w25
[6]1:2;[7]:25[8]12;[9]12;[10]12;[11]2}

[0].2 = {...;-24;-12;0;12;24;...}
[8]::= {...;-16;-4;8;20;32;... }

[8]12+[11]12:[7]12, because 8+11=19=12*1+7 => 19 ¢ [7]12

[4]:2*[8]:2=[8]:2, because 4 *8 =32 =12*2 +8 = 32 € [8]:2

[2]12*[0]12= [O]a12
[2]12*[1]12= [2]a2
[2]12*[2]12= [4]a12
[2]12*[3]12= [6]12
[2]12*[4]12= [8]12

[2]12*[6]12= [O]a12
[2]12*[7]12= [2]12
[2]12*[8]12= [4]12
[2]12*[9]12= [6]12
[2]12*[10]12=[8]12

Computer Algebra 3

Residue classes

[x]:.™ [21:, = [10]:,
Search for [,,10/2%],
Two solutions found, but only by testing:
[2]:2%[X]2 = [7]e
Modular division is not known to be solved

efficiently. And the operation ,,*2" is not
Invertable for all operands in Z,,

FH Wedel Prof. Dr. Sebastian Iwanowski CA31 slide 4

Example for a residue class set Z,

Computer Algebra 3

with unique and well-defined division:

(L7, +)

0123456

/.,

X
—

Residue classes

0123456

O~ wWNEO

In Z, the operation ,,** is invertable for all operands

0123456
1234560
2345601
3456012
4560123
5601234
6012345

O, WNEO

00000O0O
0123456
0246135
0362514
0415263
0531642
065432

except for O, but is this also possible in an efficient way,
I.e. other than testing ?

Computer Algebra 3

Residue classes

Division via determining the inverse element:

2*x=10(mod 7) x =122

(Z7’ *) 0123 4'5\6 Determining the inverse element of 2:
O |00000P0O0 a=2(mod 7)
2 0246155 = 4(mod 7)
310362514
410415263 x=10*a""(mod 7)
29831823

Computer Algebra 3

Residue classes

Division via determining the inverse element:

* Inverse elements may be determined via the extended Euclidean algorithm:

computes a** mod n, whenever gcd(a,n) = 1

e : run time: O(#n2)
= works for all a € Z_, if n is a prime number

Summary:

« Modular multiplication is always efficient.
 Modular division is efficient for prime modules

* Modular division for composed modules n=p * Q:
gcd(a,n) = 1. efficient
gcd(a,n) > 1: no efficient algorithm known!

Computer Algebra 3

Other discrete functions

The following operations are analysed in detail:
Taking powers
Computing square roots

Computing logarithms

Computer Algebra 3

Taking powers

Powers in Z-
(mod 7) is not mentioned for the sake of readability

2' = 3'=3 4t =4 5'=5 6'=6
2°=4 3*=2 4° =2 5% =4 6° =
2° = 3°=6 4° =1 5° =6 6°=6
2% = 3*=4 4* =4 5 =2 6*=1
2° =4 3°=5 4° =2 5° =3 6°=6
2° = 3% = 4° =1 5% = 6°=1

generating elements
appearently, a(-bD=1

Computer Algebra 3

Taking powers

Fermat's little theorem
Let p € P, then:
x®Y =1(mod p)

Proof by induction over x (taking an arbitrary p):

1. x® =1 (mod p)|*x
Assertion: X" =x (mod p)
2. Base: LetxbeO 0P =0 (mod p)

3. Conclusion: X" =x (mod p) > (X+1)” =x+1(mod p)

Computer Algebra 3

Taking powers

to prove: (X+1)?P =x+1

(X +1)° =x" +(E]Xp’l +(g]xp'2 +...+(pFiljx1+1 (mod p)

Py __ pt _p*(p-D)

k) (p-k)*k! (p—k)I*k!

(p-1)! Pt (p-1)! MEN (p-1)! ¥
(p—-1)*1! (p—2)*2! T x(p -1)!

(x+1)pzxp+p*[j+1(mod p)

(X+1)? =x"+1(mod p) A X" =x (mod p) = (X +1)" = x+1(mod p)

g.e.d.

Computer Algebra 3

Computing square roots

Square roots in Z-

J4 = 2(mod 7) /\\/ZE(7—2)55(mod 7)
5 =25=3*7+4
-2¢5],

X°=(X=p)°=x"=2xp+ p°=x°—p(2x—p) = x*(mod p)
V1 ={1:6}: 2 ={3:4}; /3 = 2;V4 ={2;5}; +/5 = 2;4/6 = 2(mod 7)

Computer Algebra 3

Computing square roots

Square roots in Z-
(mod 7) is not mentioned for the sake of readability

3P =3 5'=5 6'=6
3P =2 5% =4 6°=1
P =6 5°=6 6°=6
34 =4 5% =2 6°=1
3555 5° =3 6° =6
=1 °=1 6° =

V1= {16}& {34}[%4 = {25}f—?f—?(mod7)

a'? % =1(mod p) = a has got a square root?

Computer Algebra 3

Computing square roots

Square roots in Z-
(mod 7) is not mentioned for the sake of readability

I'=1 2' = 4' =4 6'=6
1° = 2°=4 42 =2 62 =1
1’ =1 2° = 4° =1 6°=6
1 =1 2% = 4* =4 1
15 = 25 _ 4 45 = 2 6

6

16 6°=1

=1 2° 39=1 4° =1
V1 = {1,6}; J2 ={3;4}; J3 =244 ={2;5}; J5 =2;4/6 = ?(mod 7)

a'?? = (p—-1)(mod p) = a has not got a square root?

Computer Algebra 3

Computing square roots
a'?™? =1(mod p) = a has got a square root

a'?™'? = (p-1)(mod p) = a has not got a square root

How come ?

Element 1 is a result in powers of each element,
because: 1=2°=3°=4°=5°=6°(mod 7)

Since exponent 6 is even, we may compute the square root:

Vi={;-1ja-1e[p-1],

Computer Algebra 3

Computing square roots

May generating elements never have square roots ?

By definition, the even powers
of generating elements do have

square roots: The powers of generating elements
3'=3 themselves as well as of the other
/ 32— 7 generating elements must be odd
5 if the modulus is a prime number.
V2 = {3% 3 =6
3'=4
V4 ={25}; 3 =5

Ji=

600% AR

500} ..

400} A

300f..--

200"

100¢: =

Computer Algebra 3

Computing square roots

Squares in Zes? f(xX)=x2

For small numbers
known parabolic form

Symmetry by
x* = (x-p)*(mod p)

There are also more
solutions than 2,

if Zn is composed (n=p*q)

L. 667=23*29

V506 = {62;315;352;602 }

Computer Algebra 3

Summaury for square roots

How to Compute a square root: Let a € Z, be known
Let x € Z,, be searched

In a residue set with prime modulus n, there are efficient methods to compute
square roots of the form +/a = x(mod n)

If n=p*q is sufficiently large (more than 200 digits), even modern computers need
years. However, x2>n should hold, i.e. results between 0 and \/Fl have to be
avoided. The reason is that for real numbers, numerical solutions are available.

But the inverse, the square is computable easily: a’ = X(mod n)

Computer Algebra 3

Discrete Logarithms

Logarithms in Z-

Query: Which is the element | have to exponentiate 2 with
in order to get 47 2" =4(mod 7)

Answer: log, 4 = 2(mod 7) because 2° = 4(mod 7)

and log, 4 =5(mod 7) because 2° =32 =4*7+4 =4(mod 7)

Query: 2% =5(mod 7)
Answer: log,5=7?(mod 7) no solution

Computer Algebra 3

Discrete Logarithms

Logarithms in Z-
(mod 7) is not mentioned for the sake of readability

1'=1 2! = 3'=3 4' =4 5'=5 6'=6
12 =1 22 =4 3¢ =2 4% = 52 =4 6° =
1°=1 2° = 3*=6 4° = 5% =6 6°=6
1* =1 24 = 3" =4 4 =4 5% =2 6% =1
1° =1 2° =4 3°=5 4° = 5° =3 6°=6
1°=1 2° =1 3 =1 4° =1 5% =1 6°=1
[XGenerating elements have a unique solution.
Not all elements of /. are reached. log,5="?

Some elements are not unique.

100014
800} "
60017
200}

200 s

Computer Algebra 3

Discrete Logarithms

Powers in Zaioos for base 2, f(x)=2x

Loy L1Ln LYy Initially the known
et e et i e W exponential function
Er J Ly ... " .l - "..-’_,- ..

_.:’ -2+ Graph is always periodic for

ks T T aeate Ay T o adivisor of n-1.
2 TR A TE e S N e Llavra- £+ 1\X\—71N0N \
o SR Il R nere. (Nn-1)=—(41vvyu-1)

N 1

W L AT e WL T e 1008/2=504
S . .t L e Y .
v 1. .. i . IR "
"’ '.‘ﬁ. .." r-.‘ .- :-‘s. .:" f\..
A TR it Ecrvinc: AN L
200 400 600 800 1000

Computer Algebra 3

Summary for discrete Logarithms

How to compute discrete logarithms

Let a € Z,, be known
Let x € Z,, be searched

If n is suffieciently large (2007: at least 200 digits), log, a = x(mod n)

Can only be computed within years even on modern computers.
However, b*>n should hold. Otherwise a solution may be obtained using a numerical

method.

On the other hand, the invers function
may be computed easily: b® = x(mod n)

Computer Algebra 3

Summary: Computation of modular functions

« Find the multiplicative inverses b/a mod n (modular division):

(Multiplication is efficiently solvable for each n.

Algorithms for division:
for prime moduli n: O(#n?) using the extended Euclidean Algorithm
for composed moduli n, gcd(a,n) = 1: see above
fir composed moduli n, gcd(a,n) > 1: no efficient algorithm known

* Find the square root mod n:

Inverse of squaring which is efficiently solvable.

Algorithm for square root:
for prime moduli: there are polynomial methods (not trivial)
for composed moduli n: no efficient algorithm known

e Find the logarithm mod n

Inverse of exponentiation which is efficiently solvable.
Algorithms for the logarithm:
no efficient algorithm known for any n.

