Computer Algebra

Sebastian lwanowski
FH Wedel

2. Integer Arithmetics
2.1 Integer representation, comparisons, addition, multiplication

Referenzen zum Nacharbeiten (in German):

Kopf 3.1,3.2, Kaplan 4.1 (bis 4.1.3)
Seminararbeit 2 (JOrg Fitzner)



Computer Algebra 2

Representation of integers in a computer

Representation of ,short numbers*

One bit per digit - works for number base 2 only

One word (e.g.: 32 bit) per number - limits the absolute value of representable numbers

Arithmetic operations implemented in hardware
—> limits the absolute value of input numbers even further

- makes run time independent of number size

Size of short numbers is limited by O(word length)

Details: Fitzner 7



Computer Algebra 2

Representation of integers in a computer
Representation of ,long numbers®

« One word per digit - works for number base O(word length)

e List of words per number -> no limit for size of representable numbers

- makes run time dependent on number size

e Extra bit for sign —> for representation of arbitrary integers

Details: Fitzner 8



Computer Algebra 2

Algorithms for long numbers of size O(n)

Comparison operators

« Compare each digit seperately starting from highest digit

e At latest when last digit of shorter word is reached, the result can be decided

- run time O(min{#a,#b}) = O(n)

—> This works for the operators =, #, <, <, >,

Details: Fitzner 10/11

>



Computer Algebra 2

Algorithms for long numbers of size O(n)

Addition and subtraction (,school method")

« Perform the operations digit by digit starting with the least digit.

e This results in at most 2 short number operations (considering the carriage number).
- run time O(max{#a,#b}) = O(n)

* Integer operations may be performed with natural number operations plus sign manipulations.
- run time O(max{#a,#b}) = O(n)

e Subtraction need not be considered separate from addition considering integers.

- run time O(max{#a,#b}) = O(n)

Details: Fitzner 13 — 17 + Assignment 1



Computer Algebra 2

Algorithms for long numbers of size O(n)

Multiplication (,school method®)

Sign computation may be performed separately.

—> constant run time (independent of number size)

Compute digit times number digit by digit starting with the least digit.

This results in at most 2 short number operations (considering the carriage number).
- run time O(max{#a,#b}) = O(n)

Shift the result according to the position of the multiplicator digit.
= run time O(n)

Compute the sum of the O(n) resulting integers using long number addition.
- run time O(n) for 2 long numbers

- run time O(n?) for n long numbers

Details: Fitzner 20



Computer Algebra 2

Algorithms for long numbers of size O(n)

Multiplication more sophisticated

Recursive bisection for numbers a = a, - base™? + a, and b = b, - base™? + b,

« Split numbers into two halves of equal size.

long number addition for size at most 2n

« Compute the resulta - b =a; b, -ffse” + az- b, + af - b,) ? base"? + a, - b,

long number multiplication for size n/2 shift operation
* Needing 4 long number multiplications and 3 long number additions,
the run time satisfies the following recursive formula:
T(N)=4T (n/2) + O(n) => T(n) € O(n?)

» This is no improvement yet to the school method !
Details: Fitzner 21



Computer Algebra 2

Algorithms for long numbers of size O(n)

Multiplication more sophisticated (with idea of Karatsuba)
Recursive bisection for numbers a = a, - base™? + a, and b = b, - base™? + b,
e Usethe equalitya, -b,+a,-b; =a,-b;+a,-b,+(a;-a,) - (b,—by)

« Computetheresulta-b=a, b, -base"+ (a;-b,+a, b, +(a,;-a,) (b,—b,)) - base"?+a, b,

* Reusing the result for a, - b, and a, - b, ,
this needs 3 long number multiplications and 6 long number additions

* Run time satisfies the following recursive formula:
TnN)=3T(n/2) +O(n) => T(n) € O(n'092(3))

* Since log,(3) = 1.6, this is indeed an improvement to the school method !

Details: Fitzner 22



