
Department of IT-Security

Master thesis

Application of an Assumption-based Truth

Maintenance System for Model-based Diagnosis

submitted by

Konstantin Ruhmann

Flotowstr. 15

22083 Hamburg

supervised by

Prof. Dr. Sebastian Iwanowski

Prof. Dr. Gerd Beuster

September 2, 2016

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Approach . 1

1.3 Scope and delimitation . 2

2 Foundations 3

2.1 Propositional logic . 3

2.1.1 Syntax . 3

2.1.2 Semantic . 3

2.1.3 Models . 4

2.1.4 Logical Implication . 4

2.1.5 Syntactical Derivation . 5

2.1.6 Horn formulas . 5

2.2 Rule-based systems . 6

2.3 Truth Maintenance Systems . 7

2.3.1 Hypothetical reasoning . 7

2.3.2 Architecture . 7

3 Assumption-based Truth Maintenance System 9

3.1 Introduction . 9

3.1.1 Motivation . 9

3.1.2 Foundations . 10

3.1.3 Labels . 12

3.1.4 Interface . 13

3.2 Node definition . 14

3.3 Label computation . 16

3.3.1 Overview . 16

3.3.2 Generating environments . 16

I

3.3.3 Reducing environments . 20

3.3.4 Preserving the truth . 22

3.4 Label update algorithms . 23

3.4.1 Overview . 23

3.4.2 Basic algorithm . 24

3.4.2.1 Methods . 24

3.4.2.2 Example . 27

3.4.3 Focus algorithm . 31

3.4.3.1 Overview . 31

3.4.3.2 Interface . 33

3.4.3.3 Methods . 34

3.4.3.4 Example . 35

3.4.4 Circling dependency networks 36

3.5 Diagnosis example . 38

4 Model-based Diagnosis 41

4.1 Introduction . 41

4.1.1 Overview . 41

4.1.2 Behavioral modes . 42

4.1.3 Notations . 44

4.2 Conflict detection . 44

4.2.1 Compute conflicts . 44

4.2.2 Mode conflicts . 48

4.3 Candidate elaboration . 49

4.3.1 Foundations . 49

4.3.2 Preferred candidates . 50

4.3.3 Basic diagnosis . 53

4.3.4 Focus diagnosis . 56

4.4 Comparison of the diagnosis engines 59

5 Prototypical implementation 60

5.1 Overview . 60

5.2 ATMS . 61

5.3 Diagnosis . 62

6 Conclusion 64

Appendices 68

II

A Content of the CD 69

B Program examples 70

B.1 ATMS . 70

B.2 FATMS . 71

B.3 Diagnosis . 71

III

List of Figures

2.1 Interaction between an IE and a TMS 8

3.1 Dependency network . 9

3.2 Justifications . 11

3.3 Structure of a label . 12

3.4 Dependency network with labels . 15

3.5 Consequent relation . 16

3.6 Example for the label computation 17

3.7 Self environments are added . 18

3.8 Computing the label Lq . 18

3.9 Result of the label computation for Lp, Lq and ⊥ 19

3.10 Computing the label Lr . 20

3.11 Reducing environments . 22

3.12 Control flow basic algorithm . 24

3.13 Initial situation for the basic algorithm example 28

3.14 Consequent of node q is r . 29

3.15 Initial situation, where the focus is empty 32

3.16 Environment {A,B,C} is added to the focus 33

3.17 Contol flow focus algorithm . 34

3.18 Environment {D,E} is added to the focus 36

3.19 Circling example . 36

3.20 Circling example extended . 37

3.21 Circling example customized . 37

3.22 Bath diagnosis . 38

3.23 Dependency network for the bath diagnosis 39

4.1 System model . 41

4.2 Dependency network for wire W1 with two modes 45

IV

4.3 Dependency network is extended by component B1 46

4.4 Dependency network for mode L1-2 47

4.5 Conflict generated by introducing an observation 48

4.6 Successors for the start candidate . 50

4.7 Elimination of preferred candidates 51

4.8 Applying the candidate generation algorithm 52

4.9 Processing of conflict (110201010) . 53

4.10 Processing of conflict (110101010) . 54

4.11 Dependency network Basic Diagnosis 55

4.12 Processing of conflict (110101010) . 57

4.13 Processing of conflict (110201010) . 57

4.14 Dependency network Focus Diagnosis 58

5.1 UML-Diagram ATMS . 61

5.2 UML-Diagram Diagnosis . 62

V

Notation

Notation Explanation

∈ Member of

∩ Intersection

∪ Union

\ Difference

⊂ Proper subset

⊆ Subset

¬ Logical connective: Not

∧ Logical connective: And

∨ Logical connective: Or

→ Logical connective: Implication

≡ Logical equivalent

> Tautology

⊥ Falsity

` Holds in /Implication that can be derived

� Model for

VI

1

Introduction

1.1 Overview

The diagnosis of a system with a large number of components in general requires

to deal with the dependencies of the components. Model-based diagnosis enables a

systematic approach to diagnosis, where the system under diagnosis is separated to

the diagnosis engine. The system is modeled in a structured way, which allows the

detection of the differences between normal and faulty behavior of a system.

The model-based diagnosis in this thesis is based on a compounded architecture.

An inference engine interacts with an assumptions-based truth maintenance system

(ATMS) to determine conflicts in a logical model of a system and consequently

provides diagnoses. The ATMS is a problem solver and allows hypothetical reasoning

for a given set of assumptions. It ensures the consistency of contradicting inferences

and is able to compute the minimal set of assumptions, which are necessary to belief

a certain proposition.

1.2 Approach

The ATMS is a problem solver, which can be used for Horn formulas. It maintains a

dependency network to trace assumptions. At first the dependency network and the

label computation is introduced for the ATMS. Afterwards the focus-ATMS (FATMS),

an extension of the ATMS, is presented. It enables to reduce the computational

costs of labeling. In addition a prototypically ATMS/FATMS with a simple interface

is implemented.

The diagnosis component uses the problem solver for conflict determination.

Therefore the interaction to the ATMS/FATMS is explained by the necessary interface

1

calls. The determined conflicts are used with appropriate manner to generate

diagnoses for the behavior of the system. In order to reduce the amount of diagnoses

an algorithm is presented to generate only the most preferable diagnoses. The

diagnosis engine is implemented and is used to diagnose a circuit.

1.3 Scope and delimitation

In a short introduction the notation for propositional logic is given. Furthermore

the terms rule-based system and truth maintenance systems are introduced, as they

are used later on. A TMS variant, the justification-based TMS, is mentioned for

completeness, but is not explained in detail.

The section for the ATMS starts with an introduction for logician and subsequently

the foundations of an ATMS are explained. The formal node definition is necessary

for computing the labels within the ATMS. An algorithm for the label computation

with example is described. Furhtermore the algorithm is extended for the variant

focus-ATMS (FATMS). The ATMS and the label update algorithm refers to Johan

de Kleer [FK93] and the FATMS refers to [TI94; Tăt97].

The model-based diagnosis is described by an example. Therefore an exemplary

circuit is given. The diagnosis engine is able to interact with both variants of the

ATMS and the FATMS. The process of diagnosis refers to [TI94; Iwa15a; Iwa15b].

Conclusively an overview of the prototypical implementation is given.

2

2

Foundations

2.1 Propositional logic

2.1.1 Syntax

An atomic formula is a proposition and can be either true or false. The syntax of

propositional logic is defined by an inductive process to allow complex formulas:

1. All atomic formulas are formulas.

2. For every formula F , ¬F is a formula.

3. For all formulas F and G, also (F ∨G) and (F ∧G) are formulas.

¬, ∧ and ∨ are logical connectives. The negation (¬) is an unary connective, whereas

the conjunction (∧) and the disjunction (∨) are binary connectives. The connective

implication (A→ B) is an abbreviation for (¬A ∨B). Equivalence (A↔ B) is an

abbreviation for ((A→ B) ∧ (B → A)) (cf. [Sch08, pp.3f]).

2.1.2 Semantic

The meaning of a formula is defined by the semantic. The elements of the set

{True, False} are truth values. An assignment for a formula is a function A, which

assigns a truth value to each atomic formula. The function A is extended by Â to

apply any formulas. This is done by an inductive process.

1. For every atomic formula F : Â(F) = A(F)

2. Â(F ∧G) =

True, if Â(F) = True and Â(G)= True

False, otherwise

3

3. Â(F ∨G) =

True, if Â(F) = True or Â(G)= True

False, otherwise

4. Â(¬F) =

True, if Â(F) = False

False, otherwise

The distinction between A and Â is used for the definition. In further applications the

distinction is disregarded and the function is called A. An assignment A is suitable

for a formula F if the function A is defined for every atomic formula in F. (cf. [Sch08,

pp.5-6]).

2.1.3 Models

A formula F is satisfiable, if A is a suitable assignment and A(F) = True. Then A

is a model for F .

A |= F

If A is an assignment, but A(F) = False, then the formula is invalid.

A 6|= F

If every suitable assignment for F is a model for F, then the formula is valid

(tautology). This is indicated by |= F . In the other case the formula is invalid 6|= F .

Truth tables can be used to determine the satisfiability of a formula, because the

construction of a truth table take into account all possible assignments (cf. [Sch08,

p.9]).

2.1.4 Logical Implication

A formula G is a logical implication of formula F it every model of F is also a model

of G.

F |= G

The definition is expandable to sets of formulas. If F is a set of formulas

{f1, . . . , fn} and G is a set of formulas {g1, . . . , gn} then F implies G if every model

satisfying all formulas of F also satisfies all formulas of G.

f1, . . . , fn |= g1, . . . , gn

4

Two formulas are equivalent if F |= G and G |= F . This is indicated by F ≡ G

(cf.[Sch08, pp.10,14]).

There exists some important equivalences. Some of them are shown in the

following table (cf. [Ros12, p.27]).

Equivalence Name
p ∧ q ≡ q ∧ p
p ∨ q ≡ q ∨ p

Commutative laws

p ∨ (p ∧ q) ≡ p
p ∧ (p ∨ q) ≡ p

Absorption laws

Table 2.1: Logical Equivalences

2.1.5 Syntactical Derivation

In semantic truth tables are used to determine (in-)satisfiability or validity of a

formula. The disadvantage of truth tables is the algorithm expense. For a formula

containing n atomic formulas the amount of combinations is 2n, which each have to

be evaluated (cf. [Sch08, p.12]).

Therefore in propositional logic exists several inference rules, which allow to

derive formulas by a given set of formulas. These syntactical derivation are indicated

with an `. Some syntactical rules are shown in the following table (cf. [Ros12, p.72]).

Name Inference rule Description
Modus ponens p ∧ (p→ q) ` q If p then q and p are true. There-

fore q is true.
Conjunction (p, q) ` (p ∧ q) p and q are true separately. There-

fore they are true conjointly.

Table 2.2: Inference rules

2.1.6 Horn formulas

A formula F in conjunctive normal form, which is a conjunction of disjunctions of

propositions, is a Horn formula if every disjunction in F contains at most one positive

proposition. For example the following formula is a Horn formula. The formula

consists of five conjunctions of disjunctions (cf. [Sch08, p.23]).

(A ∨ ¬B) ∧ (¬C ∨ ¬A ∨D) ∧ (¬A ∨ ¬B) ∧D ∧ ¬E

Horn formulas can be rewritten in a more convenient way namely implications.

Therefore two additional formulas are introduced. > is an arbitrary tautology and

5

⊥ is an arbitrary unsatisfiable formula (cf. [Sch08, p.24]).

(B → A) ∧ (C ∧D → D) ∧ (A ∧B → ⊥) ∧ (> → D) ∧ (E → ⊥)

2.2 Rule-based systems

A rule is a formal conditional if-then sentence and logical systems use them to derive

propositions. Another term for rule is justification, which is used in the following

sections. For instance the rule

A→ B

is given. The rule means, if A is true, then B is true. Material implications are

a common way to express rules, where on the left side of the implication is the

premise and on the right side is the consequent. An exemplary knowledge base for a

rule-based system is given with the following rules.

A ∧B → C

B → D

If the rule-based system has evidence, that the proposition B is True, then the

system can derive by using the inference rule modus ponens that the proposition D

is True. Furthermore a rule is directed. A rule is only applied if the premise is True.

The system has no evidence, that the proposition A is True, therefore the premise

for the first rule is not True and the rule is not applied. (cf. [BK08, p.72-81]).

Horn formulas can be used to create a knowledge base for logical systems. They

have the advantage that efficient algorithms are known to determine satisfiability or

unsatisfiability. For instance the marking algorithm can be used, which is described

in [Sch08, p.24]. But Horn formulas have the limitation, that negated literals can

not be used. For example the rule (A ∧ ¬B) → C is not a valid Horn formula.

Its transformation is (¬A ∨B ∨ C), where more than one positive literal exists (cf.

[PM10, p. 185]).

6

2.3 Truth Maintenance Systems

2.3.1 Hypothetical reasoning

Hypothetical reasoning uses assumptions to reason with unsure or incomplete data

to progress solving a problem. Therefore in a knowledge base hypothetical scenarios

are modeled, which inherently can lead to a inconsistent knowledge base (cf. [Tăt97,

p.20]). For instance a small knowledge base for a circuit with two justifications is

given(cf. [BK08, p.209]).

s → l

s ∧ ¬w → ¬l

The proposition s means that the switch is closed and if the proposition is negated

it is open. The proposition w means that the wire is ok and if negated the wire is

broken. The proposition l indicates that the lamp is lit and if negated the lamp is

dark.

Initially the system works as expected. If the switch is closed s the lamp lits l.

This is derived by the first justification of the knowlegde base. In case of a failure,

where in addition the observation ¬w is added, the system derives the propositions

l and ¬l. This is a contradiction, because a lamp can either be lit or be dark. A

simple rule-based system is not able to handle contradictions. A conclusion is added

to the KB and is used for further inferences. Furthermore conclusions cannot be

revoked (cf. [BK08, p.209-210]).

A truth maintenance system (TMS) is able to handle contradictions and ensures

the consistency in a knowledge base. A TMS provides the functionality of hypothetical

reasoning and reason maintenance. It allows to assimilate inconsistent knowledge

and is able to restore consistency. The TMS is able to answer what inferred data

can be believed if a set of assumptions is believed. The TMS avoids to restart the

reasoning from the beginning, when the set of assumptions changes (cf. [Tăt97, p.

20]).

2.3.2 Architecture

A reasoning system, which uses a TMS, is separated in the components inference

engine (IE) and TMS. The components interact via a well-specified interface.

1. Inference Engine

The inference engine has full knowledge of the domain and provides justifications

7

to the TMS. The IE depends on the specific problem.

2. TMS

The TMS receives justifications by the IE. It proceeds the justifications and is

able to answer questions to the IE. The TMS has a predefined interface and is

independent of the problem. The TMS acts like a database for the inference

engine.

The interaction between an IE and a TMS is shown in figure 2.1. The IE pro-

vides assumptions and justifications to the TMS. The TMS delivers believes and

contradictions to the IE (cf. [Tăt97, p.21], [FK93, p.158]).

Figure 2.1: Interaction between an IE and a TMS (cf. [FK93, p.158])

Typically a TMS provides the following tasks. First it makes an entailment

check, which decides what else can be believed if a set of assumptions is believed.

The second task is a consistency check, which ensures that the set of beliefs is

consistent and the third task is to compute minimal-support-sets. These are the

minimal sets of assumptions, which have to be believed for a certain proposition. An

TMS operates incrementally, which means that the addition of inferences (logical

conclusions) leads to an update of the current beliefs. In most TMSs it is not possible

to delete assumptions or inferences (cf. [Tăt97, pp. 16,21-22]).

There are several kinds of TMSs. The most known variants of TMSs are the

justification-based TMS(JTMS) and the assumptions-based TMS (ATMS). Both

TMSs are limited to Horn formulas. The JTMS is able to accomplish only the first

two tasks. It provides much more efficient algorithms for the first two tasks as the

ATMS. The ATMS supports all three tasks, but the ATMS uses an in worst case

exponential time algorithm to accomplish the third task, which then allows to solve

the first two tasks (cf. [Tăt97, p.16]).

A context is a set of assumptions. The JTMS is a single-context TMS, which

means that the JTMS maintains the beliefs for one context at a time. The ATMS is

a multiple-context TMS, which means that it can maintain beliefs for all contexts in

parallel(cf. [Tăt97, p.24]).

8

3

Assumption-based Truth Maintenance

System

3.1 Introduction

3.1.1 Motivation

An assumption-based truth maintenance system (ATMS) maintains atomic propo-

sitions in a dependency network. For example the propositions A,B,C, p and the

justifications A∧B → p, B∧C → p and A∧C → ⊥ are given. The rule A∧C → ⊥
is a contradiction, because ⊥ is derived. The dependency network is shown in figure

3.1.

A

J1 J3

p

B

J2

C

⊥

Figure 3.1: Dependency network

Logically expressed the ATMS can determine if a proposition holds when a set of

9

propositions and a set justifications are given (cf. [Kle86, p.143]). The propositions

are assumptions and they can be conjunct with the logical connective ∧. A set

of assumptions is a context and the ATMS works in all contexts at once without

explicitly computing them (cf. [Kle86, p.160]).

A

B

C

A ∧B

A ∧ C

B ∧ C

A ∧B ∧ C

?

`Justifications

A

B

C

p

⊥

For example the ATMS can determine if the proposition p holds in the context A∧B.

A ∧B `Justifications p

The determination is based on the main task of the ATMS. The ATMS is able to

determine immediately, which minimal conjunctions of assumables are necessary to

allow the derivation of a proposition (cf. [Kle86, p.145]). In the given example the

ATMS computes the conjunctions A ∧B and B ∧ C for the propositions p.

A ∧B

B ∧ C

}
`Justifications p

3.1.2 Foundations

An ATMS maintains atomic propositions and associates to each proposition a node.

A node is a data structure to store additional information for a proposition. As usual

a proposition can be either True of False. Justifications describe how a proposition

is derivable from other propositions.

x1 ∧ x2 ∧ · · · → c

The propositions x1 ∧ x2 ∧ . . . are the antecedents and the proposition c is the

consequent. A justification is a material implication and is limited to Horn formulas.

Therefore the ATMS does not allow negated literals in justifications (cf. [Kle86,

p.143]). The formulas > and ⊥ for Horn formulas are also covered by justifications.

If a set of antecedents is empty, then the consequent is unconditionally True and

10

this corresponds to the Horn formula > → c. The proposition c is called a premise

(cf. [Kle86, p.146]). A justification with the consequent ⊥ stands for a conjunction

of antecedents being False. The node ⊥ is called the contradiction node.

x1 ∧ x2 ∧ · · · → ⊥

A proposition, which is believed to be true, is called an assumption. A set of

assumptions is called an environment and logically an environment is a conjunction

of assumptions (cf. [Kle86, p.142]).

A ∧B ∧ · · · = {A,B, . . . }

Two types of environments are distinguished in an ATMS. An environment is incon-

sistent, if its propositions allow the derivation of the contradiction node. Otherwise

the environment is consistent. An abbreviation for an inconsistent environment is

the term nogood.

The figure 3.2 presents an exemplary dependency network for the nodes A, B, C,

p, ⊥ and the justifications A ∧ C → p, B → p, > → C and A ∧B → ⊥.

A

J1J3

p

C

J2

B

⊥

Figure 3.2: Justifications

A justification is presented by a box, which is labeled by an ascending numbering.

The incoming arrows to a justification are the antecedents, while the outgoing arrow

is the consequent. The premise C, justified by > → C is indicated by the yellow color

of the node. The blue color of A and B indicates that these nodes are assumptions.

Assumptions and premises are indicated in this thesis for convenience with a capital

letter.

11

3.1.3 Labels

A label is a set of environments and every node has an associated label. The structure

of an exemplary label can be seen in figure 3.3. In the example the label consist of

two environments and each environment consists of assumptions. An assumption

can appear in several environments.

{{A,B,C}, {C,E}} Label

{A,B,C} {C,E} Environments

A B C D E Assumptions

Figure 3.3: Structure of a label

A label is computed by justifications and describes ultimately how a node depends

on assumptions. The labels of all nodes are precomputed by the ATMS and the

ATMS ensures that each label of a node is consistent, sound, complete and minimal

with respect to the current set of justifications (cf. [Kle86, p.144-145]).

1. Consistent

A label is consistent if all environments of the label are consistent.

2. Sound

A label is sound if the node is derivable from each environment of the label.

3. Complete

A label of a node is complete if every consistent environment, which allows the

derivation of the node, is a superset of some environment of the label.

4. Minimal

A label is minimal if no environment of the label is a superset of any other

environment of the label.

The label of the contradiction node maintains inconsistent environments. There-

fore for this node the properties consistent and complete are slightly adapted. The

label is ”consistent” if all environments of the label are inconsistent. Related to the

complete property, each inconsistent environment is a superset of some environments

of the label.

The definition of a label ensures that a proposition is derivable by a consistent

environment E in exactly those cases that E is a superset of any environment of n’s

12

label. A node has an empty label if there is no environment justifying the node (cf.

[Kle86, p.145]).

3.1.4 Interface

In order to complete the introduction an interface for the ATMS is developed for this

thesis. In the background a label update algorithm exists. The algorithm ensures

the properties consistency, soundness, completeness and minimality of a label.

1. addJustification(n, X)

The method takes two arguments. The argument n is the consequent and the

argument X is a set of antecedents. The method adds a justification to the

ATMS. The label update algorithm is required to ensure the label definition.

2. addAssumption(n)

The method indicates that the proposition n is assumed. Afterwards the label

update algorithm is required to ensure the label definition.

3. addPremise(n)

The method indicates that the proposition n is a premise. The method

addJustification with n as consequent and the empty set as antecedent is

called.

4. addNogood(X)

The method indicates that the set of propositions X is a contradiction. The

method addJustification with ⊥ as the consequent and the set X as antecedent

is called.

5. getEnvironments(n)

The parameter n is a proposition. The function returns the environments of

n’s label.

6. getConflicts()

The function returns the nogoods of the contradiction node’s label. Therefore

the function getEnvironments with ⊥ is called.

7. isValidIn(n, X)

This function returns a boolean flag. The method returns True, if the node n

holds in context X. Therefore the environment X has to be consistent and a

superset of any environment of n’s label.

13

3.2 Node definition

A node contains additional information to handle the dependencies between the

nodes in an ATMS (cf. [Ano02]). A node consists of a tuple and is referred by an

identifier. The identifier is the proposition’s name. The elements of the tuple are

sets.

N := (C, J, L) (3.1)

C Consequents

The set C consists of identifiers, which are affected, if the node’s label changes.

J Justifications

The elements of the set J are sets of antecedents, whose consequent is the

node.1 A set of antecedents consists of identifiers, which enable to refer to the

corresponding nodes.

L Label

The elements of the set L are environments. An environment is a set and

consists of the assumptions’ identifiers.

Given a node by its identifier p it is possible to reference an element of the

tuple by an index, e.g. Cp, Jp and Lp. An exemplary application is shown for the

proposition p.

p := ({}, {{A,B}}, {{A,B}})

The list of consequents is empty. Hence no proposition is affected, if the label of p

changes. An exemplary justification A∧B → p is stored in set J . The set L consists

of an exemplary environment {A,B}.
The elements of the set C are added by the following procedure. Having a

justification with c as consequent and X as a set of antecedents

X → c,

then for each node x ∈ X the consequent c is a member of Cx. For instance the

justification A ∧B → p is given. The element p is added to CA and CB.

The node definition is presented for the following example. The example consists

of the assumptions A,B,C and the justifications A ∧B → p, B ∧ C → p and A ∧ C

1Therefore in J it is only required to store the sets of antecedents and not the consequent. For
example if A→ p is given, then Jp = {{A}}.

14

→ ⊥. The dependency network is shown in figure 3.4, where below the node names

the labels are presented. The label computation is described in the following section.

A
[['A']]

J1 J3

p
[['A', 'B'], ['B', 'C']]

B
[['B']]

J2

C
[['C']]

⊥
[['A', 'C']]

Figure 3.4: Dependency network with labels

A full application of the node definition for the example is:

A := ({⊥, p}, {}, {{A}})
B := ({p}, {}, {{B}})
C := ({⊥, p}, {}, {{C}})
p := ({}, {{A,B}, {B,C}}, {{A,B}, {B,C}})
⊥ := ({}, {{A,C}}, {{A,C}})

The set C for each node is required if a new environment is discovered for the node’s

label. For the given example the consequent relation is presented by a blue arrow in

figure 3.5, where below the node name C is given.

15

A
C=['⊥, p']

p
C=[]

⊥
C=[]

C
C=['⊥','p']

B
C=['p']

Figure 3.5: Consequent relation

The figure 3.5 also illustrates the essential role of the contradiction node. All

nodes are a consequent of the node ⊥. This relation is indicated by a yellow arrow.

The reason is, if a new inconsistent environment is discovered then the ATMS has to

ensure that all other labels are still consistent. The consequents of node ⊥ are not

stated in C⊥, because of its solely reducing property.

3.3 Label computation

3.3.1 Overview

The computation of a node’s label is done in two steps. At first environments,

determined by an inductive process, are added to the label and afterwards supersets

and nogoods are removed. The first step achieves completeness and soundness,

whereas in the second step the labels become minimal and consistent.

In the following presented algorithm is explained how a label of a node can be

exemplary computed (cf. [Ano02]). In the next section 3.4 an algorithm for the label

computation is presented, where only the incremental label changes are propagated

in the dependency network.

3.3.2 Generating environments

In the first part of the algorithm an inductive process is used to generate environments

for the label of a node. If the inductive process is applied for node p, then the labels

16

of the antecedents are used to compute the label Lp. The antecedents with the

consequent p are stored in the set Jp. A set of antecedents consists of identifiers,

therefore the labels of the antecedents are easily determined by referring their nodes.

Then these labels are combined to generate the environments for the label of node p.

This is stated in the first part of the inductive process in formula 3.2. The second

part of the inductive process is valid if the proposition is an assumption. Then an

environment, consisting only of the proposition’s identifier, is added to the node’s

label (formula 3.3).

Inductive process for generating environments

1. For all nodes N

LN := {
E1 ∪ E2 ∪ · · · ∪ Ei |
∃X ∈ JN : X = {x1, x2, . . . , xi} ∧
E1 ∈ Lx1 ∧ E2 ∈ Lx2 ∧ · · · ∧ Ei ∈ Lxi

}

(3.2)

2. If N is an assumption

{N} ∈ LN (3.3)

The label computation is shown for an example.The example consists of the

assumptions A,B,C,D,E and the justifications A ∧ B → p, B ∧ C ∧ D → p,

A ∧ C → q, D ∧ E → q and A ∧B ∧ E → ⊥. The dependency network is shown in

the following figure 3.6.

A

J2 J4J5

C

J3

BE

J1

D

q p⊥

Figure 3.6: Example for the label computation

17

For each assumption A,B,C,D,E, the inductive process is applied. The assump-

tions have no justifications, thereore no environments are generated by the first part

of the inductive process. In the second part of the process the environment of itself

are added to their labels. These environments are called self environments in this

thesis. The result can be seen in figure 3.7.

A
[['A']]

J2 J4J5

C
[['C']]

J3

B
[['B']]

E
[['E']]

J1

D
[['D']]

q p⊥

Figure 3.7: Self environments are added

The labels of the nodes p, q and ⊥ are computed by the first part of the

inductive process. The label computation is exemplary shown for node p. The label

computation for node q and ⊥ is similar. The extract of the dependency network for

node p is shown in figure 3.8. The set Jp consists of the sets of antecedents {A,B}
and {B,C,D}.

A
[[’A’]]

J4

C
[[’C’]]

J3

B
[[’B’]]

D
[[’D’]]

p

Figure 3.8: Computing the label Lq

For each element in Jp the Cartesian union is computed. The term denotes in this

thesis that the environments of the antecedents’ labels are combined to generate the

environments for the consequent’s label. An exemplary application of the Cartesian

18

union is shown at first for the labels of the set of antecedents {A,B}.

{E1 ∪ E2 | E1 ∈ LA ∧ E2 ∈ LB}
= {E1 ∪ E2 | E1 ∈ {{A}} ∧ E2 ∈ {{B}}}
= {{A} ∪ {B}}
= {{A,B}}

The application of the Cartesian union for the second set of antecedents {B,C,D}
is.

{E1 ∪ E2 ∪ E3 | E1 ∈ LB ∧ E2 ∈ LC ∧ E3 ∈ LD}
= {E1 ∪ E2 ∪ E3 | E1 ∈ {{B}} ∧ E2 ∈ {{C}} ∧ E3 ∈ {{D}}}
= {{B} ∪ {C} ∪ {D}}
= {{B,C,D}}

The label of p consist of the Cartesian union for each set of antecedents and therefore

the label Lp is

Lp = {{A,B}, {B,C,D}}.

The result for the label computation for the nodes p, q and ⊥ is shown in figure 3.9.

A
[['A']]

J2 J4J5

C
[['C']]

J3

B
[['B']]

E
[['E']]

J1

D
[['D']]

q
[['A', 'C'], ['D', 'E']]

p
[['A', 'B'], ['B', 'C', 'D']]

⊥
[['A', 'B', 'E']]

Figure 3.9: Result of the label computation for Lp, Lq and ⊥

The Cartesian union is required because the environments of the antecedents’

labels are disjunct and the Cartesian union produces all combinations for the conse-

quent’s node. This is presented for an additional justification p ∧ q → r. The labels

of the nodes p and q are shown in figure 3.9.

The application of the formula 3.2 is equal to the preceding computations, but

the application considers the Cartesian union with more than one environment in a

19

label.

{Ep ∪ Eq | Ep ∈ Lp ∧ Eq ∈ Lq}
= {Ep ∪ Eq | Ep ∈ {{A,B}, {B,C,D}} ∧ Eq ∈ {{A,C}, {D,E}}}
= {

{A,B} ∪ {A,C}, {A,B} ∪ {D,E},
{B,C,D} ∪ {A,C}, {B,C,D} ∪ {D,E}

}
= {{A,B,C}, {A,B,D,E}, {A,B,C,D}, {B,C,D,E}}

The result is shown in figure 3.10.

q
[[’A’, ’C’], [’D’, ’E’]]

J6

p
[[’A’, ’B’], [’B’, ’C’, ’D’]]

r
[[’A’, ’B’, ’C’], [’A’, ’B’, ’C’, ’D’], [’A’, ’B’, ’D’, ’E’], [’B’, ’C’, ’D’, ’E’]]

Figure 3.10: Computing the label Lr

The label generation for a premise is also covered by the inductive process. If

a proposition p is considered as a premise, then an empty set of antecedents is

added to the set Jp. The application of the formula 3.2 produces at least an empty

environment for Lp. The empty environment is a subset of any environment and

therefore the node holds in every context.

3.3.3 Reducing environments

In the second part of the algorithm the label is adjusted for supersets and contradicted

environments. In the preceding section only completeness and soundness of the label

is achieved. In this section non-minimal and inconsistent environments are removed.

1. Removing supersets

In classic set theory the subset definition is as follows:

M ⊆ N ⇐⇒ ∀x ∈M → ∀x ∈ N

This means that M ⊆ N is a subset if and only if every element of M is also

20

an element of N (cf. [Ros12, p. 119]). In general speaking the subset M would

be seen as the redundant set, because all elements are also in the superset N .

Environments have a property that change this point of view, as supersets are

removed.

The elements of an environment are conjunct and therefore the conclusion

is not valid. For example we consider the environments E1 = {A,B} and

E2 = {A,B,C}. If E1 ⊆ E2 and all propositions of E1 are true, we cannot

imply that E2 is true, because we have no information about the proposition

C. But in the other way the conclusion is feasible. If all elements of E2 are

true, then E1 is also true.

If both environments are member of a label, which means that both allow the

derivation of the label’s node. Then we can remove E2 as it doesn’t care if

the additional proposition C is true. The node is still derivable by the subset.

Therefore we can remove all supersets in LN .

{x ∈ LN | ∃y ∈ LN : y ⊂ x} 6∈ LN (3.4)

2. Removing nogoods

If an environment is a superset of a nogood then the environment is also a

nogood.

For example we have the environments E1 = {A,B} and E2 = {A,B,C}. If

E1 is a nogood, then the propositions A and B allow the derivation of the

node ⊥. As these both proposition are also in E2, the environment E2 is also

a nogood. Therefore all supersets of any nogood are removed.

{x ∈ LN | ∃y ∈ L⊥ : y ⊆ x} 6∈ LN (3.5)

This second step differs for the label of the contradiction node, because its

label is not adjusted for contradicted environments. If new environments are

discovered for the label of the contradiction node all other labels are adjusted

for contradicted environments.

The example of figure 3.10 is continued. The label of node r contains non-minimal

and contradicted environments.

Lr := {{A,B,C}, {A,B,D,E}, {A,B,C,D}, {B,C,D,E}}

21

The environment {A,B,C,D} is a superset of {A,B,C} and therefore removed. The

environment {A,B,D,E} is a superset of the nogood {A,B,E} and therefore also

removed.

Lr := {{A,B,C}, {B,C,D,E}}

Conclusively the label node r is complete, consistent, sound and minimal. The

removal process is shown in figure 3.11.

A
[['A']]

J3J1 J5

C
[['C']]

J2

B
[['B']]

E
[['E']]

J4

D
[['D']]

q
[['A', 'C'], ['D', 'E']]

J6

p
[['A', 'B'], ['B', 'C', 'D']]

r
[['A', 'B', 'C'], ['A', 'B', 'D', 'E'], ['A', 'B', 'C', 'D'], ['B', 'C', 'D', 'E']]

r
[['A', 'B', 'C'], ['A', 'B', 'D', 'E'], ['B', 'C', 'D', 'E']]

 remove supersets

⊥
[['A', 'B', 'E']]

r
[['A', 'B', 'C'], ['B', 'C', 'D', 'E']]

 remove nogoods

Figure 3.11: Reducing environments

3.3.4 Preserving the truth

The label is the truth layer of the ATMS. It enables to determine if a propositions

holds in a given context. Therefore all label operations have to be covered by inference

rules or substitutions of semantic equivalences.

1. The Cartesian union computes the mininmal sets of assumptions, which are

22

necessary to derive a proposition. The inference rule modus ponens uses these

sets of assumptions and the justifications to derive a proposition.

Having a minimal set with one assumption {A} for proposition B and the

justification A→ B then the proposition B can be derived.

A ∧ (A→ B) ` B

2. Removing nogoods and supersets of a label is covered by the logically equivalence

absorption.

For example if we have A ∧ C → N and A→ N . Then we can write:

A ∨ (A ∧ C) → N

≡ A → N

Therefore A ∧ C can be removed.

3.4 Label update algorithms

3.4.1 Overview

The preceding simple computation is inefficient, because the justifications for a node

are full computed to generate its label [FK93, p. 433]. An algorithm, which only

propagates the incremental changes of the labels, is described by Johan de Kleer

and is adapted to the definitions. In this thesis this algorithm is called the basic

algorithm. [FK93, p. 434f]

The focus algorithm extends the basic algorithm to delay environments, which

are not a subset of any focus. This reduces the label computation cost, if not all

contexts are required. An application for an FATMS is shown in the model-based

diagnosis, when it is used for conflict determination. This means, that the inference

engine (IE) is interested for the environments of the contradiction node. The ATMS

computes all conflicts for all contexts at once, whereas the FATMS only detects

conflicts for the contexts, which are in focus.

23

3.4.2 Basic algorithm

3.4.2.1 Methods

Start

propagate(n, X, A, I)

End

weave(X,A,I) new environments?

L

update(L,n)

is contradicition node?

updateNode(L,n)

label changed and
 has consequents?

updateContradictionNode(L)

 false

 true

 false true

 false

 true

addAssumption(n) addJustification(n, X)

Figure 3.12: Control flow basic algorithm

The basic algorithm is initialized by the interface methods addAssumptions(n) and

addJustifications(n,X). The method propagate is called for node n and invokes

the functions weave in order to compute new environments. If new environments

are computed, then the method update is called, which solely distinguishes if the

current node n is the contradiction node or not.

24

If the current node is the contradiction node, then the method updateCon-

tradicitionNode is called and afterwards the control flow ends.

If the current node is not the contradiction node, then the method updateNode

is called and the node’s label is updated. If the node’s label change and the node

has consequents, then the method propagate is called recursively. Thereby the

incremental change, which is a set of environments added to the node’s label, are

passed as argument. [FK93, p. 434f]

The methods are now described in detail. Afterwards an example is given.

propagate(n, X, A, I)

1. Parameters

n: A node, whose label is going to change.

X: Set of antecedents, whose consequent is n.

A: A set for the preceding node. The node is wrapped in a set to enable to

be empty.

I: Set of environments, which is the incremental change.

2. Return value: void

The procedure propagate initializes the label update algorithm. If the interface

method addJustification(n,X) is called, then their parameters are the consequent n

and a set of antecedents X. The consequent’s node and the nodes of the antecedents

are passed to the method propagate as n and X. The argument A is empty, because

the method is not called recursively and there is no predecessor. The argument I

is a set with an empty environment, which has a neutral behavior in the following

processing. An exemplary call for the justification A ∧B → p is:

propagate(p, {A,B}, ∅, {∅})

If the interface method addAssumption(n) is called, then its parameter n is a

proposition. This proposition’s node is passed to the method propagate as n. The

parameters X and A are empty. The parameter I consists of the self environment of

the node. An exemplary call for the assumption A is:

propagate(A, ∅, ∅, {{A}})

The argument A is always empty, if the label update algorithm is initialized. If

the method propagate is called recursively, then A consists of the preceding (also

25

called antecedent) node and the set I consists of the environments, which are added

to the antecedent node.

The method propagate calls the method weave(X,A,I) and receives a set envi-

ronments L. If the set L is not empty the method update(L,n) is called.

weave(X, A, I)

1. Parameters

X: Set of antecedents

A: A set for the preceding node. The node is wrapped in a set to enable to

be empty.

I: Set of environments, which is the incremental change.

2. Return value: Set of environments

For each node in X \ A the labels are gathered. The node in set A is disregarded,

because only a subset of its label, the incremental change, is used. The Cartesian

union is computed for the gathered labels and the set I. Conclusively in L all

supersets and nogoods are removed and L is returned.

update(L,n)

1. Parameters

L: Set of environments

n: A node, whose label is going to change.

2. Return value: void

The method update receives a set of environments L and a node n. The sole task of

update is to determine if n is a normal node or the contradiction node. If n is a normal

node updateNode(L,n) is called. Otherwise updateContradictionNode(L) is

called.

updateNode(L,n)

1. Parameters

L: Set of environments

n: A node, whose label is going to change.

26

2. Return value: void

This method updates the label Ln. At first all supersets in L of any environment Ln

are removed. The set L is now the incremental change.

If L is not empty, new environments are discovered for Ln. Therefore the

environments in L are added to Ln. Any supersets in Ln are removed. Then the

incremental change is propagated to the consequents of n.

For each consequent c ∈ Cn the sets of antecedents X ∈ JC are regarded. If n is

a member of X, then the method propagate(n, X, A, I) is called with this set of

antecedents. The arguments for the recursive call are

propagate(c, X, {n}, L),

where n is now the antecedent node and is wrapped in a set. The set L is the

incremental change.

In circling dependency networks it is possible that L decrease during the recursively

calls for each justification. Therefore if an environment of L is removed in Ln, then

it is also removed in L. If L is empty an early termination is done.

updateContradictionNode(L)

1. Parameters

L: Set of environments

2. Return value: void

The method receives a set of environments L. These environments are added to

the label of the contradiction node. Subsequently in each node all supersets of the

discovered nogoods are removed.

3.4.2.2 Example

The example of the preceding section is reused, but the order of justifications is

changed to demonstrate the propagation procedure. The assumptions A, B, C ,D,

E and the justifications A ∧ B → p , B ∧ C ∧D → p, D ∧ E → q, p ∧ q → r and

the contradiction A ∧B ∧ E → ⊥ are given. The dependency network can be seen

in figure 3.13. [Ano02]

27

A
[['A']]

J2 J5

C
[['C']]

J3

B
[['B']]

E
[['E']]

J1

D
[['D']]

q
[['D', 'E']]

J4

p
[['A', 'B'], ['B', 'C', 'D']]

r
[['B', 'C', 'D', 'E']]

⊥
[['A', 'B', 'E']]

Figure 3.13: Initial situation for the basic algorithm example

In order to demonstrate the propagation procedure the justification A ∧ C → q

is added. The algorithm is initialized by the interface method

addJustification(q, [’A’,’C’]) .

Before the algorithm starts, in order to apply the node definition, the set of an-

tecedents {A,C} is added to the set Jp and q is added to the sets CA and CC . Then

the method propagate(n,X,A,I) is called with

propagate(q, {A,C}, {}, {∅}).

Subsequently the function weave(X,A,I) is called to generate L.

L = weave({A,C}, {}, {∅}).

In function weave at first X \A is computed to gather the nodes for Cartesian union.

As the set A is empty, all antecedents of X are considered.

{A,C} \ {} = {A,C}

The Cartesian union is computed for the labels of antecedents and the set I. The

28

result is stored in L.

L = {EA ∪ EC ∪ EI | EA ∈ LA ∧ EC ∈ LC ∧ EI ∈ I}
= {EA ∪ EC ∪ EI | EA ∈ {{A}} ∧ EC ∈ {{C}} ∧ EI ∈ {∅}}
= {{A} ∪ {C} ∪ ∅}
= {{A,C}}

After checking L for supersets and nogoods, the label L is returned to the method

propagate.

As L is not empty the method update(L,n)

update({{A,C}}, q)

is called. And because q is not the contradiction node updateNode(L,n) is called.

updateNode({{A,C}}, q)

In method updateNode the incremental change is computed. The set L is already

the incremental change, because in L = {{A,C}} is no superset of any environment

of Lq = {{D,E}}. The environments of L are added to Lq.

Lq = {{A,C}, {D,E}}

The label computation for node q is finished, but the incremental change L has be

propagated to all consequents of q (fig. 3.14). In this case, the consequent of q is

node r.

q
[[’A’, ’C’], [’D’, ’E’]]

J4

p
[[’A’, ’B’], [’B’, ’C’, ’D’]]

r
[[’B’, ’C’, ’D’, ’E’]]

Figure 3.14: Consequent of node q is r

For each justification in Jr = {{p, q}}, where q is in the list of antecedents the

method propagate(n,X,A,I) is called. Therefore propagate is called for the element

{p, q}. For propagate the first parameter is the node r, which is the node going to

29

change, and the second parameter is the set of antecedents {p, q}. Furthermore the

parameter A is the node q, which is wrapped in a set, and the parameter I is the

incremental change L.

propagate(r, {p, q}, {q}, {{A,C}})

Thus weave(X,A,I) is called

L = weave({p, q}, {q}, {{A,C}}).

In function weave, at first X \A is computed to gather the nodes for the Cartesian

union, where node q is omitted.

{p, q} \ {q} = {p}

The Cartesian union is computed for the label of p and the set I. The result is

stored in L.

L = {Ep ∪ EI | Ep ∈ Lp ∧ EI ∈ I}
= {Ep ∪ EI | Ep ∈ {{A,B}, {B,C,D}} ∧ EI ∈ {{A,C}}}
= {{A,B} ∪ {A,C}, {B,C,D} ∪ {A,C}}
= {{A,B,C}, {A,B,C,D}}

In L the element {A,B,C,D} is a superset and is removed. In L aren’t any

nogoods and therefore function weave returns L = {{A,B,C}}.
As L is not empty update(L,n)

update({{A,B,C}}, r)

is called. Because r is not the contradiction node updateNode(L,n)

updateNode({{A,B,C}}, r)

is called.

In method updateNode the incremental change is computed. The set L is already

the incremental change, because in L = {{A,B,C}} is no superset of any environment

of Lr = {{B,C,D,E}}. The environments of L are added to Lr.

Lr = {{A,B,C}, {B,C,D,E}}.

30

The label computation for node r is finished. As r has no consequents no recursive

propagation is done.

The calling method updateNode checks unnecessary if L is reduced, since all

consequents are processed. Afterwards the control flow terminates.

3.4.3 Focus algorithm

3.4.3.1 Overview

The focus-ATMS (FATMS) is an extension of the ATMS, which delays environments

to reduce the computational cost of labeling. In comparison to an ATMS, which

works in all contexts in parallel, the FATMS is able to define several contexts. The

contexts are defined by a focus, which is a set of environments. The environments of

the focus and their subsets are the contexts for the FATMS. Therefore the FATMS

in this thesis avoids the enumeration of all contexts (cf. [Tăt97, p. 38-39]).

The FATMS processes and propagates environments only, if they are in-focus.

An environment is in-focus, if it is a subset of any environment of the focus. An

environment is out-of-focus, if it is not in-focus (cf. [Tăt97, p. 38-39]). For example

the focus F consists of the environments {A.B} and {C}.

F = {{A.B}, {C}}

Then the contexts {}, {A}, {B}, {A,B} and {C} are in-focus. The contexts are

{A,C}, {B,C}and {A,B,C} out-of-focus.

In order to block environments, the node definition 3.1 for the FATMS is extended.

N := (C, J, L, bL) (3.6)

The sets C, J and L are identical to the preceding definition. The set bL consists of

environments and is called the blocked label. A set of environments in bL consists of

the assumptions’ identifiers.

Environments of the set bL depend on the current focus. Environments, computed

by the label update algorithm, which don’t agree to the current focus are added

to the set bL. Their addition to the node’s label L and their propagation in the

dependency network is delayed. As it is possible to change the focus, it can not

be stated that L consists only of in-focus environments and bL consists only of

out-of-focus environments. If a focus changes, then the environments in the blocked

label of a node, which become in-focus, are processed. But environments in L, which

31

become out-of-focus, remain in the label, because they are already processed and

propagated (cf. [Tăt97, p.39]).

The preceding example with the assumptions A,B,C,D,E and the justifications

A∧B → p, B∧C∧D → p, A∧C → q, D∧E → q, p∧q → r and A∧B∧E → ⊥ are

reused to demonstrate the delaying of environments. In figure 3.15 the dependency

network is shown, where below the node name the label L and the blocked-label bL

are presented.

A
L=[]

bL=[['A']]

J2 J4J6

C
L=[]

bL=[['C']]

J3

B
L=[]

bL=[['B']]

E
L=[]

bL=[['E']]

J1

D
L=[]

bL=[['D']]

q
L=[]
bL=[]

J5

p
L=[]
bL=[]

r
L=[]
bL=[]

⊥
L=[]
bL=[]

Figure 3.15: Initial situation, where the focus is empty

The focus of the FATMS is empty, therefore the self environments of the assump-

tions are blocked. This can be seen in fig. 3.15, where the self-environment is a

member of the set bL. Hence, no environments are propagated, all labels are empty.

When the environment {A,B,C} is added to the focus, then all environments with

the property in-focus are processed and propagated. The result can be seen in figure

3.16.

32

A
L=[['A']]

bL=[]

J2 J4J6

C
L=[['C']]

bL=[]

J3

B
L=[['B']]

bL=[]

E
L=[]

bL=[['E']]

J1

D
L=[]

bL=[['D']]

q
L=[['A', 'C']]

bL=[]

J5

p
L=[['A', 'B']]

bL=[]

r
L=[['A', 'B', 'C']]

bL=[]

⊥
L=[]

bL=[]

Figure 3.16: Environment {A,B,C} is added to the focus

3.4.3.2 Interface

The interface of the ATMS is extended for the FATMS:

1. extendFocus(X) An environment is added to the focus of the FATMS. The

label update algorithm is required for all nodes having in-focus environments

in bL.

2. changeFocus(sX) The current focus of the FATMS is replaced by a given

focus sX. The label update algorithm is required for all nodes having in-focus

environments in bL.

3. getFocus()

Returns the environments of the focus.

The properties completeness and consistency of a label are weaker than for the

ATMS, as they are only relative ensured to the current focus (cf. [Tăt97, p.39],

[TI94]). Therefore it is necessary to adapt the interface method isValidIn(n,X) for

the FATMS.

33

4. isValidIn(n, X)

This function returns a boolean flag. The method returns True, if the node n

holds in context X. Therefore the environment X has to be consistent and a

superset of any environment of n’s label. In addition the environment X has

to be in-focus.

3.4.3.3 Methods

Start

propagate(n, X, A, I)

End

weave(X,A,I) new Environments ?

L

update(L,n)

new Environments in focus and
is contradiction node?

updateNode(L,n)

label changed and
 has consequents?

updateContradictionNode(L)

 false

 true

 false true

 false

 true

addAssumption(n) addJustification(n, X) changeFocus(sX) extendFocus(X)

Figure 3.17: Contol flow focus algorithm

The focus algorithm extends the basic algorithm. The methods propagate, up-

dateNode, updateContradictionNode and the function weave are reused. The

method update is overridden in order to add the FATMS capabilities.

update(L,n)

1. Parameters

L: Set of environments

n: A node, whose label is going to change.

34

2. Return value: void

The method update of the basic algorithm is overridden. The function update

receives the set of environments L and a node n. All environments of L, which are

out-of-focus are added to the set bLn and removed in L. Subsequently in bLn all

supersets are removed.

If in L are environments and n is the contradiction node, then the procedure

updateContradictionNode(L) is called. Subsequently in all blocked labels all

supersets of the environments in L are removed. If in L are environment and

n is not the contradiction node, then the procedure updateNode(L,n) is called.

Subsequently in bLn all supersets of the environments in L are removed.

3.4.3.4 Example

The preceding example, where the environment {A,B,C} is in the focus, is now

continued (fig. 3.16).

By adding the environment {D,E} into the focus

extendFocus([’D’, ’E’])

the label update is initialized for the nodes D and E, as their blocked environments

are now in focus. The justification D ∧ E → q computes the environment {D,E}.
The environment is in-focus and therefore added to the label of q. The justification

B∧C∧D → p computes the environment {B,C,D}. The environment is out-of-focus

and therefore the environment is added to bLp. The same applies to the environment

{A,B,E}, which is computed by the justification A∧B ∧E → ⊥. The environment

is a member of bL⊥. The result can be seen in figure 3.18.

35

A
L=[['A']]

bL=[]

J2 J3J6

C
L=[['C']]

bL=[]

J4

B
L=[['B']]

bL=[]

E
L=[['E']]
bL=[]

J1

D
L=[['D']]

bL=[]

q
L=[['A', 'C'], ['D', 'E']]

bL=[]

J5

p
L=[['A', 'B']]

bL=[['B', 'C', 'D']]

r
L=[['A', 'B', 'C']]

bL=[['A', 'B', 'D', 'E']]

⊥
L=[]

bL=[['A', 'B', 'E']]

Figure 3.18: Environment {D,E} is added to the focus

3.4.4 Circling dependency networks

Circular justifications are supported by the label update algorithm. The following

example with the justifications p → q and q → p is considered. The dependency

network is shown below.

q
[]

J2

J1

p
[]

Figure 3.19: Circling example

The circulation has no effect, because both labels are empty. By adding as-

sumption A and the justification A → p, the environment {A} is added to p and

36

propagated to q and from there back to p. There the algorithm terminates, because

the environment {A} is already a member of p’s label (fig. 3.20).

q
[[’A’]]

J2

J1

p
[[’A’]]

J3

A
[[’A’]]

Figure 3.20: Circling example extended

Even if the loop back from q take into account a few more nodes, any environment

from q would be a superset of the environment {A} and therefore removed, so that

the termination occur due the superset removal. This is shown in figure 3.21 (cf.

[Kle86, p. 155]).

A
[[’A’]]

J3

B
[[’B’]]

J4

q
[[’A’]]

J1

p
[[’A’]]

J2

r
[[’A’, ’B’]]

Figure 3.21: Circling example customized

37

3.5 Diagnosis example

The application of an ATMS is shown for a small example (cf. [PM10, p.209]). A

simplified bath situation (fig. 3.22) is given, where a washbasin tap and a shower

tap exist. If a tap is open, water flows in the washbasin or in the shower. Unless the

plug of the washbasin or shower is not in water flows in the drain, otherwise the bath

floor becomes wet. The ATMS is used to compute the minimal set of assumptions

why water is on the floor. Therefore the example is modeled in Horn formulas.

Figure 3.22: Bath diagnosis

The situation is modeled by the following rules.

washbasin wet ← t1 open

water in drain ← washbasin wet ∧ washbasin unplugged

water on floor ← washbasin wet ∧ washbasin plugged

shower wet ← t2 open

water in drain ← shower wet ∧ shower unplugged

water on floor ← shower wet ∧ shower plugged

In order to apply the example with an ATMS, each rule is added by the interface

method addJustification(n,X), for example

addJustification(’washbasin wet’ , [’t1 open’]).

Assumptions correspond to observable propositions. The assumptions for this example

are
t1 open

t2 open

washbasin unplugged

washbasin plugged

shower unplugged

shower plugged

38

They are added by the interface method addAssumption(n), for example

addAssumption(’t1 open’).

As it is not possible, that the plug of the washbasin or the shower is in or not in

at the same time, this is added by a contradiction. It is an integrity constraint, which

ensures that conflicting propositions cannot be true at the same time (cf. [PM10,

p.185]).

⊥ ← washbasin unplugged ∧ washbasin plugged

⊥ ← shower unplugged ∧ shower plugged

They are added by the interface method addNogood(X), for example

addNogood([’washbasin unplugged’, ’washbasin plugged’]).

This kind of modeling is used, because the ATMS is limited to Horn formulas, which

prevent negated literals in justifications (cf.[Kle86, p.143]). A rule like (A∧¬B)→ C

is not a valid Horn formula. If the rule is transformed, it has two positive literals

(¬A ∨B ∨ C).

The resulting dependeny network is shown in the following figure 3.23.

washbasin_plugged
[['washbasin_plugged']]

J1 J8

shower_unplugged
[['shower_unplugged']]

J2 J6

⊥
[['shower_plugged', 'shower_unplugged'],

 ['washbasin_plugged', 'washbasin_unplugged']]

washbasin_unplugged
[['washbasin_unplugged']]

J5

shower_plugged
[['shower_plugged']]

J7

t2_open
[['t2_open']]

J3

shower_wet
[['t2_open']]

washbasin_wet
[['t1_open']]

J4

t1_open
[['t1_open']]

water_in_drain
[['shower_unplugged', 't2_open'],

 ['t1_open', 'washbasin_unplugged']]

water_on_floor
[['shower_plugged', 't2_open'],

 ['t1_open', 'washbasin_plugged']]

Figure 3.23: Dependency network for the bath diagnosis

The interface method getEnvironments(n) can be used to obtain the envi-

ronments for a node. If the set of environments is empty, then no environment

allows the derivation of that node. The proposition water on floor has two minimal

environments, which allow its derivation.

t1 open ∧ washbasin plugged

t2 open ∧ shower plugged

}
`Justifications water on floor

The interface method isValidIn(n, X) can be used to obtain a boolean flag if

a node is valid for a given environment. A node holds in the provided environment

39

if the environment is a superset of any environment of the node’s label and the

environment is consistent. The environment is consistent, if it is not a superset

of any nogood. An exemplary usage of the method isValidIn for the proposition

water on floor would be true, if the assumptions {t2 open, shower plugged} are

given.

isValidIn(’water on floor’, [’t2 open’, ’washbasin plugged’])

The interface method getConflicts() returns the set of environments, which

allow the derivation of the contradiction node. Although Horn formulas do not allow

disjunctions and negated literals to be input, they can be derived (cf. [PM10, p.185]).

washbasin plugged ∧ washbasin unplugged

shower plugged ∧ shower unplugged

}
`Justifications ⊥

A nogood corresponds to a disjunction of negated literals. For example:

¬shower plugged ∨ ¬shower unplugged

This means, that at least one of the assumptions has to be False.

This small diagnosis example is solved with an ATMS, because the ATMS can

immediately determine the minimal sets of assumptions for a proposition. Solving

this example with an easy implemented inference engine, which uses the marking

algorithm, which is an efficient algorithm to check satisfiability for Horn formulas

(cf. [Sch08, p. 28]), requires the explicit computation of all contexts. In this

example these are 26 = 64 contexts, where 6 is the amount of assumptions. Thereby

contradicted and minimal environments have to determined. The ATMS computes

immediately the minimal consistent environments for all propositions and considers

all contexts without explicit computing them all.

40

4

Model-based Diagnosis

4.1 Introduction

4.1.1 Overview

Model-based diagnosis provides a general domain independent approach to diagnosis.

The knowledge about the process of diagnosis is separated from the knowledge

about the system under diagnosis. Therefore the diagnosis engine can be reused

for several applications. The diagnostic task is to determine why a system under

diagnosis is not functioning as it was indented.(cf. [Tăt97, p. 6])

The system under diagnosis describes how components interact with each other.

It is divided into components to reuse the components for different systems (cf.

[Tăt97, p. 17], [Iwa15a]).

Figure 4.1: System model

41

The process of diagnosis is shown for the system in figure 4.1. The example

consists of four types of components: a battery (B1), wires (Wx), switches (Sx) and

lamps (Lx). Each component has ports to interact with other components. For

example wire W1 is connected to port p0 and p1. In this scenario port p1 is connected

to three components W1, W2 and S1. An additional junction for three components

is not considered in this scenario to reduce the amount of components. The ports p0,

p1, p2, p3, p4 and m0, m1, m2 correspond to links between components. The values

for them can be either supply power p or ground g. The ports s1, s2, l1 and l2 enable

to introduce observations to the diagnosis process. In case of a switch the position

can be up or down. The position down indicates that power flows through the switch

and up that no power flows through the switch. A lamp can either be lit or be dark.

The process of diagnosis uses conflicts triggered by observations to deduce com-

ponents, which may be faulty (cf. [TI94, p.4].[Iwa15a]). For example if the switch

position s1 is down and the lamp l1 is not lit then at least one component is faulty.

Therefore for each component behavioral modes are defined, which describe how

a component behaves in correct and faulty situations. In the sub process conflict

detection the modes of the components and the observations are used to obtain

conflicts (cf. [Iwa15b]). A conflict describes a discrepancy between a logical model

of a system and the physical device. Subsequently these conflicts are used in the

process candidate elaboration. A candidate is an assignment of a behavior mode to

each component (cf. [Iwa15b]). The goal is to determine which behavior modes of

the components can explain the given observations. If l1 is not lit an explanation

might be that the component L1 is broken, but another explanation could be that

the battery is uncharged. These explanations are generated within the diagnose

process and can be ordered by probability.

4.1.2 Behavioral modes

For each component behavioral modes are defined. At least one correct behavior

mode is given, which is the first mode. Further modes are faulty modes, which are

ordered by preference and probability (cf. [Iwa15b]). The behavioral modes of the

types in the given example are shown in the following table 4.1. The table consist of

the type name, the mode name, values for the variables of the type, rules for each

mode, a probability for the mode and a description as necessary.

For example the type battery has two variables a1 and a2, which are assigned

in this example to p0 and m0. Allowed values are supply voltage p and ground g.

These variables are used to define rules for the modes. The rules are considered as,

42

if the component is given mode then the rules for that mode are valid. For example

if a1 = p0 and a2 = m0 and the battery is in mode 1, then because of the empty

list of antecedents p0 = p and m0 = g are valid. If the battery is in mode 2, then

only m0 = g is valid. The rules for the battery have an empty list of antecedents,

but consequentially the mode is also part of the list of antecedents, which is further

shown.

Type Mode Values Rules P Description
Battery 1 a1, a2 ∈ {p, g} ()→ ”a1 = p”

()→ ”a2 = g”
0.8 Battery works as ex-

pected
2 ()→ ”a2 = g” 0.2 Battery error

Wire 1 a1, a2 ∈ {p, g} (”a1 = p”)→ ”a2 = p”
(”a1 = g”)→ ”a2 = g”

(”a2 = p”)→ ”a1 = p”
(”a2 = g”)→ ”a1 = g”

0.999 Power flows through
the wire in both direc-
tions

2 0.001 Wire error
Switch 1 a1, a2 ∈ {p, g}

a3 ∈ {up, down}
(”a1 = p” ∧ ”a3 = down”)→ ”a2 = p”
(”a1 = g” ∧ ”a3 = down”)→ ”a2 = g”

(”a2 = p” ∧ ”a3 = down”)→ ”a1 = p”
(”a2 = g” ∧ ”a3 = down”)→ ”a1 = g”

0.98 Power flows through
the switch in both di-
rections, if the switch
is down.

2 (”a1 = p”)→ ”a2 = p”
(”a1 = g”)→ ”a2 = g”

(”a2 = p”)→ ”a1 = p”
(”a2 = g”)→ ”a1 = g”

0.01 Switch position down

3 0.01 Switch error
Lamp 1 a1, a2 ∈ {p, g}

a3 ∈ {lit, dark}
(”a1 = p” ∧ ”a2 = g”)→ ”a3 = lit”
(”a1 = p” ∧ ”a2 = p”)→ ”a3 = dark”
(”a1 = g” ∧ ”a2 = g”)→ ”a3 = dark”
(”a1 = g” ∧ ”a2 = sv”)→ ”a3 = lit”

(”a1 = p” ∧ ”a3 = lit”)→ ”a2 = g”
(”a1 = p” ∧ ”a3 = dark”)→ ”a2 = p”
(”a1 = g” ∧ ”a3 = dark”)→ ”a2 = g”
(”a1 = g” ∧ ”a3 = lit”)→ ”a2 = p”

(”a2 = p” ∧ ”a3 = lit”)→ ”a1 = g”
(”a2 = p” ∧ ”a3 = dark”)→ ”a1 = p”
(”a2 = g” ∧ ”a3 = dark”)→ ”a1 = g”
(”a2 = g” ∧ ”a3 = lit”)→ ”a1 = p”

0.9 Lamp is lit, if on one
port is power and on
the other port is gr-
ound

2 ()→ ”a3 = dark” 0.1 Lamp error

Table 4.1: Types and behavior modes

In order to apply a type to a component a unique component’s name is necessary.

Then a mode can be indicated by the component’s name and the mode number. For

example the mode names for the battery B1 are B1-1 and B1-2. The delimiter is an

”-”.

The modeling of the local behavior of a component cannot be automated so

far. A model for a component should consider the balance between complexity

and completeness. A model becomes more reliable the more accurate the model

43

is. Otherwise reasoning becomes harder with these models. The models of the

components can be combined to generate several systems for the diagnosis (cf.

[Tăt97, p. 18]).

4.1.3 Notations

The representation of the state of a system can be done in two notations. In the first

notation the mode names are presented in a set. For example if all components are

in mode one then the representation is

{ B1-1, W1-1, W2-1, S1-1, S2-1, L1-1, L2-1, W3-1, W4-1 }.

In the second notation the modes are ordered by their component (cf. [Iwa15b]). In

the given example the static order is B1, W1, W2, S1, S2, L1, L2, W3, W4. If all

components are in mode 1 then the representation is:

(111111111)

If there is no proposition made about a component in the first notation the

component is omitted and in the second representation indicated by a zero. For

example if L1 is in mode 2 and it is the only proposition, then the representation

is {L1-2} or (000002000). The first notation is the native structure of an ATMS,

whereas the second notation is common in model-based diagnosis and is mostly

preferred because of its shortness.

4.2 Conflict detection

4.2.1 Compute conflicts

A conflict is a set of behavioral modes, which form a contradiction. The conflict

detection is the task of the ATMS. The system under diagnosis is added to the ATMS

by applying interface methods.

To determine explanations for the observations the modes of the components

are added to the ATMS as assumptions. For example for the component W1 the

interface calls are:

addAssumption("W1-1")

addAssumption("W1-2")

44

The rules are transfered to justifications. In table 4.1 the rules are defined with

variables. By adding a justification to the ATMS the variables are instantiated and

the mode is added to the list of antecedents. For example the rule (”a1 = p”) →
”a2 = p” of mode W1-1 and the variables a1 = p0 and a2 = p1 is the justification

(W1-1 ∧ ”p0 = p”)→ ”p1 = p”. The interface call is:

addJustification("p1=p", ["W1-1", "p0=p"])

Further rules for mode W1-1 are added on the same way. In order to obtain conflicts

contradictions are defined. For component W1 the contradictions (p0=sv ∧ p0=g)

→ ⊥ and (p1=sv ∧ p1=g) → ⊥ are required. They indicate that at most one value

exists at the ports p0 and p1. The interface calls for the contradictions are:

addNogood(["p0=p", "p0=g"])

addNogood(["p1=p", "p1=g"])

The resulting dependency network is shown in figure 4.2.

p0=p
[]

J3

J4

J1

W1-1
[['W1-1']]

J5

J6

p1=p
[]

J2

⊥
[]

p1=g
[]

p0=g
[]

W2-1
[['W2-1']]

Figure 4.2: Dependency network for wire W1 with two modes

45

If the component B1 is also added, the dependency network increases, which is

shown in figure 4.3. The contradiction for port m0 is also added.

p0=p
[['B1-1']]

J4 J9

J1

B1-1
[['B1-1']]

J6

J2

W1-1
[['W1-1']]

J8

J10

p1=p
[['B1-1', 'W1-1']]

J3

⊥
[]

p1=g
[]

p0=g
[]

J5

m0=p
[]

m0=g
[['B1-1'], ['B1-2']]

J7

B1-2
[['B1-2']]

W2-1
[['W2-1']]

Figure 4.3: Dependency network is extended by component B1

Adding all components to the ATMS results in a large dependency network. The

full list of contradiction is given below. All entries are added by the interface method

addNogood(X).

p0=p ∧ p0=g → ⊥
p1=p ∧ p1=g → ⊥
p2=p ∧ p2=g → ⊥
p3=p ∧ p3=g → ⊥
p4=p ∧ p4=g → ⊥
m0=p ∧m0=g → ⊥
m1=p ∧m1=g → ⊥
m2=p ∧m2=g → ⊥
s1=up ∧ s1=down → ⊥
s2=up ∧ s2=down → ⊥
l1=lit ∧ l1=dark → ⊥
l2=lit ∧ l2=dark → ⊥

46

Conflicts occur by adding observations to the ATMS. This is shown for a small

example. In figure 4.4 the dependency network is shown for mode L1-2. The integrity

constraint that port l1 can either be dark or be lit at the same time is also added.

L1-2
[['L1-2']]

J1

l1=dark
[['L1-2']]

J2

⊥
[]

l1=lit
[]

Figure 4.4: Dependency network for mode L1-2

Adding the observation that l1 is lit results in a conflict. This is shown in figure

4.5. Introducing the observation l1 = lit is archived by the interface call:

addPremise("l1=lit")

47

L1-2
[]

J1

l1=dark
[]

J2

['L1-2']

⊥
[['L1-2']]

l1=lit
[[]]

[[]]

Figure 4.5: Conflict generated by introducing an observation

Subsequently the label update algorithm is applied. The labels of ”l1=dark” and

”l1=lit” are used to generate the label of the node ⊥, whereby the environment

{L1-2} is added. As a new environment is added to the label of ⊥, all labels are

adjusted for the contradicted environment. Therefore in the nodes ”L1-2” and

”l1=dark” the environment {L1-2} is removed. This means with respect to the

observations, that the component L1 cannot be in mode 2, as this mode produces a

conflict. The representation of the conflict in the second notation is (000002000).

The environments of the contradiction node are the conflicts for the model-based

diagnosis and can be gathered by the interface method getConflicts().

4.2.2 Mode conflicts

The ATMS can compute conflicts because it works in all contexts at once. A context

is a combination of modes. As a component can at most be in one mode, contexts

with more than one mode for a component do not need to be regarded. For example

the ATMS does not need to regard the following context.

{B1-1,B1-2,W1-1}

48

The removal of such contexts is done by contradictions. Therefore the following

contradictions are additionally added by the interface method addNogood(X). As

the second notation cannot present such mode conflicts they are indicated by ”MCnf”.

B1-1 ∧ B1-2 → ⊥
W1-1 ∧W1-2 → ⊥
W2-1 ∧W2-2 → ⊥
S1-1 ∧ S1-2 → ⊥
S2-1 ∧ S2-2 → ⊥
L1-1 ∧ L1-2 → ⊥
L2-1 ∧ L2-2 → ⊥
W3-1 ∧W3-2 → ⊥
W4-1 ∧W4-2 → ⊥

4.3 Candidate elaboration

4.3.1 Foundations

A candidate is an assignment of exactly one behavioral mode to each component

of the system. The diagnosis process starts with the candidate (111111111), which

indicates that all components are in behavioral mode one. If all components are not

faulty no conflicts arise and the system is working properly. If in the example both

switches are down and only one lamp is lit, then the system is not working properly

and some of the modes are not in behavioral mode 1. The candidate generation

process generates new candidates which explain these symptoms. A symptom is the

discrepancy between the model and the physical system. A consistent candidate is

also called a diagnosis.

The process of diagnosis is triggered by observations, whereby conflicts are

generated [Iwa15a]. In the example the switch position and the lamplights can be

observed. Possible values are:

s1 ∈ {up, down}
s2 ∈ {up, down}
l1 ∈ {lit, dark}
l2 ∈ {lit, dark}

The interface of the diagnosis engine is as follows:

1. makeDiag(A)

49

The argument A is a dictionary, which contains an assignment of observation

point and value. An exemplary call for makeDiag is

makeDiag({ s1: down, s2: down }) .

The method adds the observations to the ATMS/FAMTS and computes the

preferred candidates.

2. getCandidates()

The method returns a list of pairs. The first element of the tuple is the candidate.

The second element is the probability of the candidate. The probabilities for

the modes of different components are indepedent to each other. Therefore the

probability is the result of the multiplication of the probabilities for each mode

(cf. [Iwa94, p.6]).

4.3.2 Preferred candidates

If a candidate becomes inconsistent by a conflict it is replaced by its successors. For

example if we have an arbitrary system with four components C1, C2, C3, C4 and a

conflict (1101) then the initial candidate (1111) becomes inconsistent. The detection

that (1111) is inconsistent is done by a superset test:

{ C1-1 , C2-1 , C4-1 } ⊆ { C1-1 , C2-1 , C3-1 , C4-1 }

The set of successors for (1111) are the candidates (2111), (1211), (1112). In each

successor one behavior mode is increased. The successor (1121) is still inconsistent for

the conflict and therefore not created. The process is shown in figure 4.6. Consistent

candidates are indicated by the color green.

1101

1111

2111 1211 1121 1112

Figure 4.6: Successors for the start candidate

50

By continuously applying this candidate generation scheme the amount of candi-

dates massively increases. To reduce the amount of relevant candidates an algorithm

is used where candidates preferred by other candidates are not created. This is

possible because the modes for a component are ordered by preference and probability

(cf. [Tăt97, p.21]).

A candidate A is preferred to candidate B, if each mode of A is at most the

number of the mode of candidate B (cf. [Iwa15b]). For example

(1211) is preferred to (2211).

If the preceding example is continued and the new conflict (2100) is discovered,

then the candidate (2111) becomes inconsistent and is replaced by the successors

(3111) and (2211). The successors (2121) and (2112) are inconsistent and therefore

not created. This is shown in figure 4.7.

1111

2111 1211 1121 1112

3111 22112121 2112

2100

Figure 4.7: Elimination of preferred candidates

The successors are verified that they are not preferred by any existing consistent

candidates. The candidate (3111) is not preferred by any existing candidate and

therefore it is a new consistent candidate. The successor (2211) is preferred by

the existing candidate (1211) (blue link) and therefore the candidate (2211) is not

created.

The algorithm for generating candidates receives all existing conflicts, the current

consistent candidates and a new conflict. The algorithm returns a set of consistent

candidates:

genCandidates(cnfs, candidates, new cnf)

1. Verify that the current candidates are consistent for the new conflict and

remove inconsistent candidates from the set of consistent candidates.

51

2. Generate recursively all successors of the inconsistent candidates. Successors,

which are inconsistent for the same conflict as its predecessor are not created.

3. If a successor has no preferred candidate, the successor is added to the set of

consistent candidates.

4. Return consistent candidates

The application of the algorithm is shown by continuing the preceding example,

where the conflict (0002) is added. The algorithm is called with the existing conflicts,

the consistent candidates and the new conflict (0002).

genCandidates({(1101), (2100)},
{(1211), (1112), (3111)},
(0002)

)

The algorithm discovers, that candidate (1112) is inconsistent and removes it

from the set of consistent candidates. Afterwards the successors are generated for this

candidate. As in fig 4.8 is shown, the only consistent successor is (1113). Further can-

didates are inconsistent because of the same conflict as its predecessor. The candidate

(1113) is not preferred by any other candidate and is added to the set of consistent

candidates. In the end the set of consistent candidates {(1211), (1113), (3111)} is

returned.

1111

21111211 1121 1112

31112211 2121 2112 1212 1122 1113

0002

Figure 4.8: Applying the candidate generation algorithm

The algorithm is described in [Iwa15b]. The reference also gives an idea for the

preference lattice of the canidates.

52

4.3.3 Basic diagnosis

The basic diagnosis uses the ATMS. If an observation is given by the interface

method makeDiag(A), the observation is added to the ATMS and the conflicts are

determined. For each new conflict the candidate generator algorithm is called. The

process of the basic diagnosis is:

1. Add observation.

2. Detect conflicts with the help of the ATMS.

3. Generate candidates for each new discovered conflict.

Consider the following example. The observations that lamp 1 is dark and switch

1 is down are done. These observations are added to the diagnosis engine by calling

makeDiag(’s1’: ’down’, ’l1’: ’dark’) .

These observations are added to the ATMS and conflicts are computed. The

method makeDiag calls the inferface method of the ATMS addPremise(n) for

each observation. This is indicated in the over-dimensioned figure 4.11, where the

observations have the color yellow and the conflicts are in the contradiction node.

The mode conflicts ”MCnf” are hidden in this figure. They are necessary for the

conflict generation, but irrelevant for the candidate generation. The discovered

conflicts are {(110201010), (111211111)}. They are obtained by the interface method

of the ATMS getConflicts().

For each conflict the candidate generation algorithm is called. The set of initial

conflicts is empty, the set of initial candidates is {(111111111)} and the first processed

conflict is (110201010).

genCandidates({}, {(111111111)}, (110201010))

The initial candidate does not become inconsistent therefore the set of consistent

candidates is returned unchanged (fig. 4.9).

110201010

111111111

Figure 4.9: Processing of conflict (110201010)

By processing the second conflict the arguments for the algorithm are

53

genCandidates({(110201010)}, {(111111111)}, (110101010)) .

The process of the algorithm is illustrated in figure 4.10. The successor (111211111)

is inconsistent because of the first conflict (110201010) and therefore a recursion is

done.

110201010

111211111

110101010

111111111

211111111 121111111 112111111 111121111 111112111 111111211 111111121 111111112

211211111 121211111 112211111 111311111 111221111 111212111111211211 111211121111211112

Figure 4.10: Processing of conflict (110101010)

The consistent candidates are gathered by the interface method getCandidates().

The consistent candidates, ordered by probability, are:

Candidate Probability
1 (211111111) 15.5 %
2 (111112111) 6.9 %
3 (111311111) 0.63 %
4 (111111121) 0.06 %
5 (121111111) 0.06 %

Table 4.2: List of candidates with probabilities

The highest probability is, that the battery is not working, followed by probability

that the lamp 1 is broken. The third candidate indicates that the switch is broken

and the last two indicate wire errors.

In order to demonstrate the capabilities of the dependency network the following

observations are added additionally.

makeDiag(’s2’: ’down’, ’l2’: ’lit’)

Then the first three candidates change, because now it is not probable anymore that

only the battery is uncharged. Additional to the battery another component has to

be in a faulty mode.

Candidate Probability
1 (111112111) 6.9 %
2 (111311111) 0.63 %
3 (211131111) 0.16 %

Table 4.3: Extract of the first three candidates with probabilities

54

S2-1
000010000

J4

J9

J39 J46

J62

J75

p4=p
111020000

J19

J24

J28

J32

J38

J60

J1

L2-1
000000100

J3J10

J12

J18

J25

J26

J31

J58

m2=p
110101001
110201001

J53 J64

l2=dark
101221111
111121101
111221101
101121111
201121111
000000200
201221111

J55

J2

S2-2
000020000

J11

J47 J74

p2=p
111000000

J41 J71

m2=g
200000011
100000011

J84

l2=lit
111020111

s2=down

J45

p3=p
110200000
110100000

J21J29

J52

J63

J70 J72

J83 J5

S1-1
000100000

J13

J43J51J81

p1=p
110000000

J7

J34

J40J61

s1=down
000000000

J56

J6

m1=g
100000010
200000010

J16

J20

J23

J54 J68

l1=lit

J14

J49 J66

L1-1
000001000

J8

J30

J35

J86

S1-2
000200000

J15

J59J78

m1=p
110201000
110101000

J27 J82

l1=dark
000000000

L1-2
000002000

J22

W4-2
000000002

J44

S1-3
000300000

p4=g
101221010
101121010
201221010
201121010

p2=g
201101010
101101010
201201010
101201010

J79

s1=up
p3=g

100001010
200001010

p1=g
100101010
200101010
100201010
200201010

J76

J77

W2-1
001000000

J57

J17

L2-2
000000200

s2=up

W4-1
000000001

B1-1
100000000

J33 J42J67

W1-1
010000000

J48

J73 J80

W3-1
000000010

J36

J65 J85

W2-2
002000000

W3-2
000000020

B1-2
200000000

J69

S2-3
000030000

p0=p
100000000

J37

⊥
110101010
110201010

p0=g
210201010
210101010

W1-2
020000000

J50

m0=p
m0=g

100000000
200000000

Figure 4.11: Dependency network with all components and introduced observations for the basic diagnosis

55

4.3.4 Focus diagnosis

The Focus diagnosis bases on the FATMS. In large systems it is not feasible to

consider all possible mode combinations at once, therefore the contexts, looking for

conflicts, are highly restricted (cf. [Tăt97, p.21]).

The focus diagnosis starts with the initial candidate (111111111) and this is the

only context the FATMS is searching for conflicts. For clarification all assumptions

in the FATMS unequal to the first mode are not propagated. This is shown in figure

4.14, where some assumptions, usually displayed by a blue box, are gray, because

their self environment is delayed.

The diagnosis process for the focus diagnosis differs to the basic diagnosis as the

consistent candidates, computed by the candidate generation algorithm, replace the

current focus of the FATMS. Subsequently the conflict detection is done. This process

is repeated until no new consistent candidates are discovered. The full diagnosis

process is as follows:

1. Add observation.

2. Do, while new candidates are found.

(a) Replace current focus with the set of consistent candidates.

(b) Detect conflicts with the help of the FATMS.

(c) Generate candidates for each new discovered conflict.

The preceding example is reused for the focus diagnosis. The same algorithm

is used to generate the candidates, therefore the resulting candidates are the same.

The example shows how the process differs to the basic diagnosis, because the focus

diagnosis has to change the focus in order to obtain new conflicts. By calling

makeDiag(’s1’: ’down’, ’l1’: ’dark’)

the diagnosis process is started. The observations are added to the FATMS by the

interface method addPremise(n) and the conflicts are obtained by the interface

method getConflicts(). The first discovered conflict is (110101010). In comparison

to the basic diagnosis both conflicts were discovered at once. In the next step the

consistent candidates are computed.

genCandidates({}, {(111111111)}, (110101010))

56

The result can be seen in the following figure 4.12.

110101010

111111111

211111111 121111111 112111111 111211111 111121111 111112111 111111211 111111121 111111112

Figure 4.12: Processing of conflict (110101010)

As new candidates are discovered, the process is repeated. The consistent

candidates replace the current focus of the FATMS to detect new conflicts. This is

done by the interface method of the FATMS changeFocus(sX), where sX is the set

of consistent candidates. Subsequently the conflicts are obtained by the interface

method getConflicts(⊥).

Thereby the conflict (110201010) is discovered. Applying the candidate generator

with the old conflicts, the consistent candidates and the conflict (110201010) are

shown in the following figure 4.13.

110201010

111211111

111111111

211111111 121111111 112111111 111121111 111112111 111111211 111111121 111111112

211211111 121211111 112211111 111311111 111221111 111212111111211211 111211121111211112

Figure 4.13: Processing of conflict (110201010)

By subsequently adding the consistent candidates to the focus, no new conflicts

are discovered and therefore no new candidates are found and the process ends. The

dependency network for the diagnosis process is shown in the over-dimensioned figure

4.14.

The added mode conflicts to the FATMS are not necessary for the focus diagnosis,

because as long as the candidate generator does not create not allowed candidates,

these mode conflicts are not in any focus. As they are never propagated, they remain

in the delayed label of the contradiction node.

57

L2-1
000000100

J3

J4

J9

J10

J17

J18

J25

J26J27

J28

J32

J33

J56

p4=p

J60

J61J63

J1

p2=p
111000000

J2J45J71

S2-2

J11

J54 J55J75

S2-1
000010000

J12

J38 J76

s2=down

J48

l2=lit

J47

m2=g
200000011
100000011

J57

J84

m2=p
110201001
110101001

J67

l2=dark

p3=p
110100000
110200000

J22J30

J39

J66

J72 J73

J86 J5

p1=p
110000000

J6

J34

J37 J62

s1=down
000000000

J13

J40 J80

S1-1
000100000

J42J43

S1-2
000200000

J15

J58J81

J7

L1-1
000001000

J8 J14

J16

J23J31

J49

J64

J83

m1=g
200000010
100000010

J24

J59 J68

l1=lit

J53

m1=p
110201000
110101000

J20J29

l1=dark
000000000

p4=g

p2=g
201101010
101201010
101101010

J82

s1=up
p3=g

200001010
100001010

p1=g
100201010
200101010
100101010

J77

J78

B1-1
100000000

J35J36J69

L1-2
000002000

J21

J19

L2-2

W2-1
001000000

J50

m0=p

J51J65

W3-1
000000010

J44

J85

W4-1
000000001

J52

s2=up

S1-3
000300000

W1-1
010000000

J46

J74 J79

W2-2

B1-2
200000000

J70

S2-3

W4-2

p0=p
100000000

J41

⊥
110201010
110101010

p0=g
210101010

W3-2
000000020

W1-2
020000000

m0=g
100000000
200000000

Figure 4.14: Dependency network with all components and introduced observations for the focus diagnosis. In comparison to the
basic diagnosis some assumptions, for example L2-2 (top left), are not propagated.

58

4.4 Comparison of the diagnosis engines

The basic diagnosis and the focus diagnosis use the same candidate generation

algorithm. Therefore this is not the subject of the comparison. The basic diagnosis

uses the general ATMS and the focus diagnosis uses the FATMS. The aim of the

FATMS is to reduce the label computation by delaying environments. Therefore

the total amount of different environments in an ATMS/FATMS (diff envs) and the

average label length of labels with environments (avg label length) are compared for

both diagnosis engines.

Observation
Basic diagnosis Focus diagnosis

diff envs avg label length diff envs avg label length
1 Initial situation 43 1.5 0
2 s1=down, l1=dark 72 1.9 39 1.4
3 s2=down, l2=lit 121 3.3 109 2.9

Table 4.4: Comparison of the diagnosis engines

The comparison in table 4.4 shows the amount of different environments and the

average label length in the order the observations are added to the diagnosis engines.

The initial situation describes the preparation of the ATMS and FATMS. The ATMS

cannot delay environments and therefore 43 environments are created during the

initializing of the dependency network. The average length of a label is about 1.5

environments per label. In the FATMS no focus is set, therefore no environments

are propagated.

By adding the first observation s1 = down and l1 = dark to both diagnosis

engines, the FATMS is able to reduce the label computation. The amount of different

environments is significantly reduced and the label length is in average shorter than

for the ATMS. By adding the second observation s2 = down and l2 = lit to both

diagnosis engines the advantage of the FATMS decreases, but the amount of different

environments and the average label length is still lower than for the ATMS. Therefore

the label computation is reduced for both observations. The reference [TI94] can be

used for further reading.

59

5

Prototypical implementation

5.1 Overview

The prototypical implementation consists of two parts. The first one is the ATMS

and the second one is the diagnosis engine, which depends on the first one.

The prototypes are implemented in Python 2.7. The main functions can be used

without additional modules. In order to draw dependency networks the tool and

module graphviz is required. Further the module nose is a test framwork and is used

for the ATMS/FATMS.

60

5.2 ATMS

<<abstract>>
Core

nodes : dict

addAssumption()
addJustification()
addNogood()
addPremise()
getEnvironments()
getConflicts()
isValidIn()

Node

consequents : set
contradictionNode : bool
element : object
justifications : set
label : set

getNode()
addConsequent()
addJustification()
addJustificationUpdateConsequent()
getConsequents()
getElement()
getJustifications()
getLabel()
isContradictionNode()
setContradictionNode()

nodes: value

*

1

<<datatype>>
object

nodes: key

*

1

ATMS

propagate()
update()
updateContradictionNode()
updateNode()
weave()

FATMS

focus : set

getFocus()
extendFocus()
changeFocus()
update()
isValidIn()

<<datatype>>
frozenset

focuses

*

1

FNode

blockedLabel : set

getNode()
getBlockedLabel()

blockedLabel

*

1

consequents

*

1

label

*

1

justifications

*

1

element

1

1

*

1

*

1

Figure 5.1: UML-Diagram ATMS

The class Core is an abstract class and maintains the structure of the ATMS. Each

proposition, which is a distinct hashable object, is associated to a node (cf. [Ano]).

Therefore the variable nodes is a dictionary, where to each proposition a Node-object

is mapped.

The classes ATMS and FATMS can be instantiated to provide the different ATMS

variants. The class ATMS inherits from the class Core and provides the label update

algorithm. The FATMS inherits from the class ATMS and extends the label update

algorithm to provide the FATMS capabilities.

The class Node represents the definition of a node. The set consequents contains

recursively Node-objects. The datatype frozenset is a built-in data type to represent

sets in the build-in data type set (cf. [Ano]). This construct is used for the set

label and the set justifications, where sets of Node-objects are stored. As the ATMS

61

works only with references, by calling the interface method getEnvironments() the

references are replaced with the actual objects and therefore the variable element is

necessary. The class FNode inherits from the class Node and extends the Node-object

with the set blockedLabel.

An exemplary usage of the ATMS/FATMS can be seen in the appendix B.1, B.2.

5.3 Diagnosis

BDiagnosis

atms : ATMS

makeDiag()

<<abstract>>
Diagnosis

candidates : set
conflicts : set
observations : dict
system : Components

generateCandidates()
generateSuccessors()
getObservations()
hasPreferred()
pprint()
printResults()
setObservations()

Component

believes : list
contraints : list
modes : list
name : str
observables : dict

addBelieve()
addConstraint()
addMode()
addObservable()
getBelieves()
getContraints()
getModes()
getObservables()

Mode

component : Component
probability : float
rules : list

addRule()
getModeIndex()
getNextMode()
hasNextMode()

modes
*1

Components

components : list

applyATMS()
getComponents()
getStartCandidate()
pprint()

components

*

1

system
11

<<datatype>>
frozenset

conflicts

*

1

candidates

*

1

FDiagnosis

atms : FATMS

makeDiag()

Rule

antecedents : list
consequent : object

addAntecdent()
getAntecedents()
getConsequent()

rules
*1

*

1

Figure 5.2: UML-Diagram Diagnosis

62

A component consists of modes and each mode has associated rules. This relation is

mapped to the classes Component, Mode and Rule. The class Components provides

the structure of a system.

The class Diagnosis provides the candidate generation methods for the diagnosis

process. The subclasses BDiagnosis and FDiagnosis can be instantiated. Therefore a

system has to be passed. The class BDiagnosis uses the classic ATMS, whereas the

FDiagnosis uses the FATMS.

Each Mode-object is an assumption. Therefore conflicts in the class Diagnosis,

computed by the AMTS/FATMS, consist of sets of Mode-objects. This is indicated

by the built-in datatype frozenset. The same applies to the set of candidates, which

are used additionally as focuses for the FATMS.

An exemplary usage of the diagnosis engine can be seen in the appendix B.3.

63

6

Conclusion

This thesis describes an assumption-based truth maintenance system (ATMS), which

can be used for hypothetical reasoning and reason maintenance. Therefore the ATMS

is introduced and its operation described. The focus-ATMS (FATMS) is an extension

of the ATMS and attempts to reduce the computational cost. The ATMS/FATMS is

applied for model-based diagnosis, which is a systematic approach to diagnosis. The

diagnosis engine processes conflicts, computed by the ATMS/FATMS, to generate

candidates for the system under diagnosis. In order to improve the comprehensibility

the ATMS/FATMS and the diagnosis engine are prototypically implemented.

The introduction of the ATMS begins with a motivation and is followed by the

foundations, where the basic terms are described. Each proposition has an associated

label, which is maintained by the ATMS. A definition of the label and its importance

for the derivation of the label’s node is presented. Then an interface is given for

the ATMS, which presents how the ATMS can be used. The label computation

is presented for an example. Therefore a node definition and an inductive process

for generating environments is presented. Succesivley non-minimal and inconsistent

environments are removed. Furthermore a label update algorithm is described, which

propagates only the incremental change. The FATMS is an extension of the ATMS.

Therefore the node definition and the label update algorithm is extended to delay

environments, which are out-of-focus. The label update algorithms are described by

an example. Conclusively a diagnosis example for the application of the ATMS is

given.

The model-based diagnosis is presented for an exemplary circuit. In the beginning

an overview of the diagnosis process is given and behavior modes for the types of

the circuit’s components are defined. These types are used to define a system under

diagnosis. A diagnosis engine uses the ATMS/FATMS to determine conflicts in

64

a system under diagnosis. The interaction between the diagnosis engine and the

ATMS/FATMS is presented by the interface calls of the ATMS/FATMS. Subsequently

by providing observations the ATMS/FATMS computes conflicts for the candidate

elaboration. In order to reduce the amount of candidates an algorithm is applied to

compute only the most preferable candidates. The diagnosis engine is distinguished

by two types. The basic diagnosis uses the ATMS and the focus diagnosis uses

the FATMS. The process of diagnosis is compared for both types. Conclusively a

comparison of the label computation of the ATMS and FATMS for the same diagnosis

tasks is presented.

The thesis accomplishes the targeted aims. The ATMS/FATMS is described

and prototypically implemented. It can be used by an interface for hypothetical

reasoning. A simple example is given in this thesis, which can be adapted. In order

to analyze an ATMS/FATMS, the dependency network can be visualized. This is an

helpful feature to create a knowledge base. The model-based diagnosis is described

for an example and the prototypical implementation can be used to diagnose further

simple circuits. The interaction between the inference engine and the ATMS/FATMS

is exemplary presented by the interface calls of the ATMS/FATMS, which leads to

an improved understanding of the compounded architecture. The comparison of the

delaying of environments has shown that the FATMS is able to reduce the amount

of environments and therefore the label computation.

65

Bibliography

[Ano] Anonymous. Built-in Types. url: https://docs.python.org/2/librar

y/stdtypes.html#set (visited on 05/26/2016).

[Ano02] Anonymous. Assumption-Based Truth Maintenance. 2002. url: https:

//www.cse.unsw.edu.au/~billw/cs9414/notes/kr/atms/atms.html

(visited on 05/26/2016).

[BK08] C. Beierle and G. Kern-Isberner. Methoden wissensbasierter Systeme.

4th ed. Wiesbaden: Viewweg + Teubner, 2008.

[FK93] K. Forbus and J. de Kleer. Building Problem Solvers. Reading, Mas-

sachusetts: MIT Press, 1993.

[Iwa15a] S. Iwanowski. Model-Based Reasoning. Wedel, 2015. url: http://www.

fh- wedel.de/fileadmin/mitarbeiter/iw/Lehrveranstaltungen/

2015WS/AAI/AAI4.4.pdf (visited on 08/23/2016).

[Iwa15b] S. Iwanowski. Model-Based Reasoning, Details. Wedel, 2015. url: http:

//www.fh-wedel.de/fileadmin/mitarbeiter/iw/Lehrveranstaltung

en/2015WS/AAI/AAI4.4Details.pdf (visited on 08/23/2016).

[Iwa94] S. Iwanowski. An Algorithm for Model-Based Diagnosis that Considers

Time, Annals of Mathematics and Artificial Intelligence 11. Baltzer, 1994.

[Kle86] J. de Kleer. An Assumption-based TMS. North-Holland: Elsevier Science

Publishers, 1986.

[PM10] D. Poole and A. Mackworth. Artificial Intelligence: foundations of com-

putational agents. Cambridge: Cambridge University Press, 2010. url:

http://artint.info/ (visited on 06/13/2016).

[Ros12] K. Rosen. Discrete Mathematics and Its Applications. New York: McGraw-

Hill, 2012.

[Sch08] U. Schöning. Logic for Computer Scientists. Boston: Birkhäuser, 2008.

66

https://docs.python.org/2/library/stdtypes.html#set
https://docs.python.org/2/library/stdtypes.html#set
https://www.cse.unsw.edu.au/~billw/cs9414/notes/kr/atms/atms.html
https://www.cse.unsw.edu.au/~billw/cs9414/notes/kr/atms/atms.html
http://www.fh-wedel.de/fileadmin/mitarbeiter/iw/Lehrveranstaltungen/2015WS/AAI/AAI4.4.pdf
http://www.fh-wedel.de/fileadmin/mitarbeiter/iw/Lehrveranstaltungen/2015WS/AAI/AAI4.4.pdf
http://www.fh-wedel.de/fileadmin/mitarbeiter/iw/Lehrveranstaltungen/2015WS/AAI/AAI4.4.pdf
http://www.fh-wedel.de/fileadmin/mitarbeiter/iw/Lehrveranstaltungen/2015WS/AAI/AAI4.4Details.pdf
http://www.fh-wedel.de/fileadmin/mitarbeiter/iw/Lehrveranstaltungen/2015WS/AAI/AAI4.4Details.pdf
http://www.fh-wedel.de/fileadmin/mitarbeiter/iw/Lehrveranstaltungen/2015WS/AAI/AAI4.4Details.pdf
http://artint.info/

[Tăt97] M. Tătar. Dependent defects and aspects of efficiency in model-based

diagnosis. Hamburg, 1997. url: https : / / www . researchgate . net /

publication/35729370 (visited on 07/14/2016).

[TI94] M. Tătar and S. Iwanowski. Aspects of Efficient Focusing, 5th International

Workshop on Principles of Diagnosis (DX). New Paltz (USA), 1994.

67

https://www.researchgate.net/publication/35729370
https://www.researchgate.net/publication/35729370

Appendices

68

A

Content of the CD

1. Master thesis

2. Implementation

(a) ATMS/FATMS

(b) Diagnosis Engine

69

B

Program examples

B.1 ATMS

from ATMS import ATMS

atms = new ATMS()

atms . addAssumption (’A ’)

atms . addAssumption (’B ’)

atms . addAssumption (’C ’)

atms . addAssumption (’D ’)

atms . addAssumption (’E ’)

atms . a d d J u s t i f i c a t i o n (’p ’ , [’A ’ , ’B ’])

atms . a d d J u s t i f i c a t i o n (’p ’ , [’B ’ , ’C ’ , ’D ’])

atms . a d d J u s t i f i c a t i o n (’ q ’ , [’A ’ , ’C ’])

atms . a d d J u s t i f i c a t i o n (’ q ’ , [’D ’ , ’E ’])

atms . a d d J u s t i f i c a t i o n (’ r ’ , [’ p ’ , ’ q ’])

atms . addNogood ([’A ’ , ’B ’ , ’E ’])

print atms #p r i n t f u l l atms

atms . draw (’FILENAME ’) #draw dependency network

70

B.2 FATMS

from FATMS import FATMS

atms = new FATMS()

atms . addAssumption (’A ’)

atms . addAssumption (’B ’)

atms . addAssumption (’C ’)

atms . addAssumption (’D ’)

atms . addAssumption (’E ’)

atms . a d d J u s t i f i c a t i o n (’p ’ , [’A ’ , ’B ’])

atms . a d d J u s t i f i c a t i o n (’p ’ , [’B ’ , ’C ’ , ’D ’])

atms . a d d J u s t i f i c a t i o n (’ q ’ , [’A ’ , ’C ’])

atms . a d d J u s t i f i c a t i o n (’ q ’ , [’D ’ , ’E ’])

atms . a d d J u s t i f i c a t i o n (’ r ’ , [’ p ’ , ’ q ’])

atms . addNogood ([’A ’ , ’B ’ , ’E ’])

atms . extendFocus ([’A ’ , ’B ’ , ’C ’])

print atms #p r i n t f u l l atms

atms . draw (’FILENAME ’) #draw dependency network

B.3 Diagnosis

The components can be created by the static method loadComponent. The usage of

the method is explained in the readme of the diagnosis engine. The arguments for

the method are the component name, an assignment of the variables and a structure

of the component. In the structure variables exists, which are replaced by the given

assignment.

from Components import Components , loadComponent

from Diagnos i s import BDiagnosis , FDiagnosis

71

from CTypes . power import power

from CTypes . wire import wire wi th er rormode as wire

from CTypes . lamp import lamp

S = Components ([

loadComponent (

name=’B1 ’ ,

a={ ”a1” : ”p0” , ”a2” : ”m0”} ,

ctype= ”power”) ,

loadComponent (

name=’W1’ ,

a={ ”a1” : ”p0” , ”a2” : ”p1”} ,

ctype= ” wire ”) ,

loadComponent (

name=’L1 ’ ,

a={ ”a1” : ”p1” , ”a2” : ”m1” , ”a3” : ” l 1 ” } ,

ctype= ”lamp”) ,

loadComponent (

name=’W2’ ,

a={ ”a1” : ”m0” , ”a2” : ”m1”} ,

ctype= ” wire ”)

])

d = BDiagnosis (S)

#d = FDiagnosis (S)

d . makeDiag ({ ’ l 1 ’ : ’ dark ’ })

print d . getCandidates ()

72

Index

antecedents, 10

assumption, 11

basic algorithm, 24

basic diagnosis, 53

blocked label, 31

Cartesian union, 18

conflict, 44

consequent, 10

context, 10

contradiction node, 11

dependency network, 11

environment, 11

focus, 31

focus algorithm, 34

focus diagnosis, 56

in-focus, 31

incremental change, 25

justification, 10

label, 12

node, 14

nogood, 11

out-of-focus, 31

preferred candidate, 51

premise, 11

self environment, 18

73

Affidavit

I hereby declare that this master thesis has been written only by the undersigned

and without any assistance from third parties.

Furthermore, I confirm that no sources have been used in the preparation of this

thesis other than those indicated in the thesis itself.

Place, Date Konstantin Ruhmann

74

	Introduction
	Overview
	Approach
	Scope and delimitation

	Foundations
	Propositional logic
	Syntax
	Semantic
	Models
	Logical Implication
	Syntactical Derivation
	Horn formulas

	Rule-based systems
	Truth Maintenance Systems
	Hypothetical reasoning
	Architecture

	Assumption-based Truth Maintenance System
	Introduction
	Motivation
	Foundations
	Labels
	Interface

	Node definition
	Label computation
	Overview
	Generating environments
	Reducing environments
	Preserving the truth

	Label update algorithms
	Overview
	Basic algorithm
	Methods
	Example

	Focus algorithm
	Overview
	Interface
	Methods
	Example

	Circling dependency networks

	Diagnosis example

	Model-based Diagnosis
	Introduction
	Overview
	Behavioral modes
	Notations

	Conflict detection
	Compute conflicts
	Mode conflicts

	Candidate elaboration
	Foundations
	Preferred candidates
	Basic diagnosis
	Focus diagnosis

	Comparison of the diagnosis engines

	Prototypical implementation
	Overview
	ATMS
	Diagnosis

	Conclusion
	Appendices
	Content of the CD
	Program examples
	ATMS
	FATMS
	Diagnosis

